原题链接

[COCI2021-2022#4] Autobus

题目描述

在一个国家里有 \(n\) 座城市。这些城市由 \(m\) 条公交线路连接,其中第 \(i\) 条线路从城市 \(a_i\) 出发,到 \(b_i\) 停止,路程中耗时 \(t_i\) 分钟。

Ema 喜欢旅行,但她并不喜欢在公交线路之间换乘。在旅行过程中,她希望最多只需坐 \(k\) 个不同的公交线路。

Ema 想知道,从城市 \(c_i\) 到城市 \(d_i\) 的最短旅行时间是多少(最多坐 \(k\) 个不同的公交线路)。

输入格式

第一行包含两个整数 \(n,m\),分别表示城市的数量和公交车线路的数量。

接下来 \(m\) 行,第 \(i+1\) 包含三个整数 \(a_i,b_i,t_i\),分别表示第 \(i\) 条公交车线路的起点、终点和从起点到终点所需的时间。

接下来一行包含两个整数 \(k,q\),最大坐的不同公交线路的个数和问题题的个数。

接下来 \(q\) 行,第 \(m+j+3\) 行包含两个整数 \(c_j,d_j\),表示询问从城市 \(c_j\) 到城市 \(d_j\) 的最短旅行时间。

输出格式

输出包含 \(q\) 行,第 \(i\) 行包含一个整数,表示从城市 \(c_i\) 到城市 \(d_i\) 的最短旅行时间。

样例 #1

样例输入 #1

4 7
1 2 1
1 4 10
2 3 1
2 4 5
3 2 2
3 4 1
4 3 2
1 3
1 4
4 2
3 3

样例输出 #1

10
-1
0

样例 #2

样例输入 #2

4 7
1 2 1
1 4 10
2 3 1
2 4 5
3 2 2
3 4 1
4 3 2
2 3
1 4
4 2
3 3

样例输出 #2

6
4
0

样例 #3

样例输入 #3

4 7
1 2 1
1 4 10
2 3 1
2 4 5
3 2 2
3 4 1
4 3 2
3 3
1 4
4 2
3 3

样例输出 #3

3
4
0

提示

【样例解释】

每个样例中的答案都已经标记在图中。

【数据规模与约定】

本题采用子任务捆绑测试。

  • Subtask 1(15 pts):\(k ≤ n ≤ 7\)。
  • Subtask 2(15 pts):\(k ≤ 3\)。
  • Subtask 3(25 pts):\(k ≤ n\)。
  • Subtask 4(15 pts):没有额外限制。

对于 \(100\%\) 的数据,\(2\le n \le 70,1\le m,t_i\le 10^6,1\le a_i,b_i,c_j,d_j\le n,1\le k\le10^9,1\le q \le n^2\)。

【提示与说明】

本题分值按 COCI 原题设置,满分 \(70\)。

题目译自 COCI2021-2022 CONTEST #4 T2 Autobus。

题解

题目的要求是求全源最短路,而且\(n\)(图上总点数)非常小,和\(floyd\)的相性很好,所以首先考虑\(floyd\)算法。

本题的第一个难点在于“最多只需坐\(k\)个不同的公交线路”。但仔细观察数据范围,\(2\le n \le 70,1\le k \le10^9\),可以见得在大部分情况下,\(k\)是比\(n\)大的。因为每个点至多到一次,所以一个点到该定点的线路也最多走一次,最复杂的旅行方案也只需要走\((n-1)\)条线路。而\(k\)比\(n\)大就意味着旅行不再受“最多只需坐\(k\)个不同的公交线路”的限制。

所以,对于这部分的数据,我们可以跑一个裸的\(floyed\)来处理出图上任意两个点之间的最短路。

if(k>=n)
{
for(int l=1;l<=n;l++)//l枚举断点
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)//floyd标志性的三层for循环
{
ans[i][j]=minn(ans[i][j],ans[i][l]+ans[l][j]);
//ans[i][j]根据floyd算法的定义,为i到j的最短路
}
}
}
}

那么剩下的问题就是处理会受\(k\)值限制的情况了。

既然有一个对经过路径条数限制的条件,那么我们不妨给记录最短路的数组再增加一个维度。

令\(dis[i][j][k]\)表示经过\(k\)条边的前提下,\(i\)到\(j\)的最短路。

再加入\(k\)限制之前,我们先来看看传统的\(floyd\)是如何工作的。

可以直观地看到,类似动态规划,\(dis[i][j]\)可能由\(dis[i][l]+dis[l][j]\)更新而来,或者由\(dis[i][j]\)直接继承。

那么考虑在这个更新的过程中加入\(k\)的限制。

若\(dis[i][j]\)是由\(dis[i][l]+dis[l][j]\)更新而来的,那么在这种情况下\(i\)到\(j\)的经过边数就是\(i\)到\(l\)的经过边数与\(l\)到\(j\)的经过边数的总和

那\(i\)到\(j\)可能的经过的边数就可以通过\(i\)到\(l\)与\(l\)到\(j\)可能经过的边数更新。我们的方法是,外层循环从\(1\)到\(k\)枚举\(i\)到\(l\)可能经过的边数\(p1\),内层循环从\(1\)枚举\(l\)到\(j\)可能经过的边数\(p2\),且\(p1+p2<=k\).

k=minn(k,n);
for(int l=1;l<=n;l++)//l枚举断点
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)//floyd标志性的三层for循环
{
for(int p1=1;p1<=k;p1++)//i到l可能的边数
{
for(int p2=1;p2<=k&&p1+p2<=k;p2++)//l到j可能的边数
{
dis[i][j][p1+p2]=minn(dis[i][j][p1+p2],dis[i][l][p1]+dis[l][j][p2]);
}
}
}
}
}

然后我们便得到了从点\(i\)到点\(j\),经过\(1~k\)条边的最短路。然后我们再用\(ans[i][j]\)处理出这经过\(1~k\)条边的方案中最短的情况。(即最短路中的最短路)

综合以上两种情况,\(ans[i][j]\)就是最终的最短路了。

如果想用以下代码AC,需要做好常数优化,比如\(O2\),\(register\)...

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int inf=1e9;
const int N=75;
int n,m,a,b,t;
int k,q,c,d;
int dis[N][N][N];//dis[i][j][k]:经过k条边的前提下,i到j的最短路
int ans[N][N];
int minn(int a,int b)
{
return a<b?a:b;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
dis[i][j][k]=1e9;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans[i][j]=1e9;
for(int i=1;i<=n;i++)
for(int k=1;k<=n;k++)
dis[i][i][k]=0;
for(int i=1;i<=n;i++)
ans[i][i]=0;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&t);
dis[a][b][1]=minn(dis[a][b][1],t);
ans[a][b]=minn(ans[a][b],t);
}
scanf("%d%d",&k,&q);
if(k>=n)
{
for(int l=1;l<=n;l++)//l枚举断点
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)//floyed标志性的三层for循环
{
ans[i][j]=minn(ans[i][j],ans[i][l]+ans[l][j]);
//ans[i][j]根据floyed算法的定义,为i到j的最短路
}
}
}
}
else
{
k=minn(k,n);
for(int l=1;l<=n;l++)//l枚举断点
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)//floyed标志性的三层for循环
{
for(int p1=1;p1<=k;p1++)//i到l可能的边数
{
for(int p2=1;p2<=k&&p1+p2<=k;p2++)//l到j可能的边数
{
dis[i][j][p1+p2]=minn(dis[i][j][p1+p2],dis[i][l][p1]+dis[l][j][p2]);
}
}
}
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans[i][j]=inf;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int l=1;l<=k;l++)
ans[i][j]=minn(ans[i][j],dis[i][j][k]);
}
for(int i=1;i<=q;i++)
{
scanf("%d%d",&c,&d);
if(c==d) puts("0");
else if(ans[c][d]==inf) puts("-1");
else printf("%d\n",ans[c][d]);
}
return 0;
}

继续考虑,若我们能优化掉一层循环,是不是就可以更安稳地A掉这道题了?

依然是以\(k\)作为突破口,有以下策略:“\(k\)越大,答案一定不会更差。”现在我们要利用这种策略,那么上文“令\(dis[i][j][k]\)表示经过\(k\)条边的前提下,\(i\)到\(j\)的最短路”的定义就不合适了。因为我们并不一定要把\(k\)条边走完,\(k\)只是我们做选择时的限制。\(k\)越大,说明限制越宽松。

那么我们的解法便初具雏形了。最外层从\(2\)到\(k\)枚举每一种最大经过的边限制,(为什么不从\(1\)开始枚举?因为最多经过一条边就是相邻两点间的距离了)在循环内跑一个\(floyd\),总共四层循环。

剩下的问题就是,转移方程如何设计。首先我们需要明确一点:\(k\)越大,说明选择的面更广,所以每一次的答案,是从上一次的答案加上“新的选择”生成的。

b[i][j]=minn(b[i][j],a[i][l]+init[l][j]);

这就是核心转移方程,其中\(b\)数组记录下一次的答案,\(a\)数组记录这一次的答案,\(init\)数组是我们最开始输入的图,它正代表着“新的选择”。

为了维护这个转移方程,首先我们要把输入的图记录下来——\(init\)数组在后续是不会改变的;然后用\(a,b\)两个数组记录这次的结果和下次的结果。具体地讲,就是每轮循环开始时将\(a\)赋给\(b\),跑完\(floyd\)后再将\(b\)赋给\(a\),如此往复。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=75;
const int inf=1e9;
int n,m,u,v,t;
int k,q,c,d;
int init[N][N],a[N][N],b[N][N];
int minn(int a,int b)
{
return a<b?a:b;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
init[i][j]=inf;//init数组初始化为一个极大值
for(int i=1;i<=n;i++)
init[i][i]=0;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&t);
init[u][v]=minn(init[u][v],t);
}
scanf("%d%d",&k,&q);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=init[i][j];//a数组最开始的状态就是init
k=minn(k,n);//同理,每个点最多到一次,所以和n取最小
for(int p=2;p<=k;p++)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
b[i][j]=a[i][j];//a赋给b for(int l=1;l<=n;l++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
b[i][j]=minn(b[i][j],a[i][l]+init[l][j]);//核心:floyd for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=b[i][j];//b赋给a
}
for(int i=1;i<=q;i++)
{
scanf("%d%d",&c,&d);
if(c==d) puts("0");
else if(a[c][d]==inf) puts("-1");
else printf("%d\n",a[c][d]);
}
return 0;
}

还可以更快吗?

注意到转移方程:

b[i][j]=minn(b[i][j],a[i][l]+init[l][j]);

因为该转移满足结合律,所以考虑用广义矩阵快速幂优化。再想,上个方法的最外层循环是不是在枚举\(k\)?那么,这个转移从本质上来讲就是求\(init[l][j]^k\).

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=75;
const int inf=0x3f3f3f3f;//为了方便memset的使用,inf不可以开成1e9
int n,m,u,v,t;
int x,q,c,d;
int init[N][N];
int ans[N][N];
int minn(int x,int y)
{
return x<y?x:y;
}
void mul(int a[N][N],int b[N][N])//矩阵乘法,仔细观察会发现转移方程像极了floyd
{
int c[N][N];
memset(c,inf,sizeof(c));
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
c[i][j]=minn(c[i][j],a[i][k]+b[k][j]);
memcpy(a,c,sizeof(c));
}
int main()
{
scanf("%d%d",&n,&m);
memset(init,inf,sizeof(init));
for(int i=1;i<=n;i++) init[i][i]=0;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&t);
init[u][v]=minn(init[u][v],t);
}
scanf("%d%d",&x,&q);
x=minn(x,n);
memset(ans,inf,sizeof(ans));
for(int i=1;i<=n;i++) ans[i][i]=0;
while(x)//矩阵快速幂
{
if(x&1) mul(ans,init);
mul(init,init);
x>>=1;
}
for(int i=1;i<=q;i++)
{
scanf("%d%d",&c,&d);
if(ans[c][d]==inf) puts("-1");
else printf("%d\n",ans[c][d]);
}
return 0;
}

Autobus 方法记录的更多相关文章

  1. EF里查看/修改实体的当前值、原始值和数据库值以及重写SaveChanges方法记录实体状态

    本文目录 查看实体当前.原始和数据库值:DbEntityEntry 查看实体的某个属性值:GetValue<TValue>方法 拷贝DbPropertyValues到实体:ToObject ...

  2. 64位 SQL Server2008链接访问Oracle 过程汇总解决方法记录

    64位 SQL Server2008链接访问Oracle 过程汇总解决方法记录 经过几天不停的网上找资料,实验,终于联通了. 环境:系统:win 2008 ,SqlServer2008 R2, 连接O ...

  3. js实用方法记录-js动态加载css、js脚本文件

    js实用方法记录-动态加载css/js 附送一个加载iframe,h5打开app代码 1. 动态加载js文件到head标签并执行回调 方法调用:dynamicLoadJs('http://www.yi ...

  4. js实用方法记录-简单cookie操作

    js实用方法记录-简单cookie操作 设置cookie:setCookie(名称,值,保存时间,保存域); 获取cookie:setCookie(名称); 移除cookie:setCookie(名称 ...

  5. js实用方法记录-指不定哪天就会用到的js方法

    js实用方法记录-指不定哪天就会用到的js方法 常用或者不常用都有 判断是否在微信浏览器中 测试代码:isWeiXin()==false /** * 是否在微信中 */ function isWeix ...

  6. Java给各个方法记录执行时间

    Java给各个方法记录执行时间 long startTime = System.currentTimeMillis();...//要测试时间的方法LoggerFactory.getLogger(Bas ...

  7. make menuconfig error 解决方法记录

    新建的一个虚拟机,发现make menuconfig 后会出错,查了一下是缺少一些库. 这个错误已经错了两次了,我不希望第三次出现了还想不起来,所以特此记录. # 错误信息: make[2]: *** ...

  8. 简单一键CENTOS6 安装PPTP VPN方法记录

    申明:我们使用PPTP VPN仅仅只能用在查阅资料等正规渠道,不要用在不良用途上.方法收集于网上,这里我用在搬瓦工VPS(VPS方案直达),采用的是CENTOS6 64位系统.我们需要预先将VPS服务 ...

  9. ASP.NET页面优化性能提升方法记录

    今天与大家分享:一种优化页面执行速度的方法.采用这个方法,可以使用页面的执行速度获得[8倍]的提升效果. 为了让您对优化的效果有个直观的了解,我准备了下面的测试结果截图: 测试环境:1. Window ...

随机推荐

  1. 6.11 NOI 模拟

    \(T1\)魔法师 \(f(x)\)是各个数位之积,当\(f(x)\ne 0\),每一位只能是\(1\sim 9\),考虑数位积的质因数分解只能是\(2,3,5,7\)的形式,考虑对所有的\((a,b ...

  2. Dubbo源码(七) - 集群

    前言 本文基于Dubbo2.6.x版本,中文注释版源码已上传github:xiaoguyu/dubbo 集群(cluster)就是一组计算机,它们作为一个总体向用户提供一组网络资源.这些单个的计算机系 ...

  3. DolphinScheduler 集群高可用测试:有效分摊服务器压力,达到性能最大优化!

    点击上方 蓝字关注我们 1 文档编写目的 Apache DolphinScheduler(简称DS)是一个分布式去中心化,易扩展的可视化DAG工作流任务调度平台.在生产环境中需要确保调度平台的稳定可靠 ...

  4. 解决使用 Eruda 绑定 dom 未在指定位置显示问题

    前言 开发项目中,使用到 Eruda 打印控制台信息显示 文档:https://github.com/liriliri/eruda 安装 Eruda npm install eruda --save ...

  5. java-分支重载以及构造方法

    1:方法的签名: 方法名+参数列表就是一个方法的签名 2.方法的重载(Overload): 1)发生在同一个类中,方法名称相同,参数列表不同 2)编译器在编译时会根据方法的签名自动绑定方法 3.构造方 ...

  6. Excel 名称管理器是什么,并实现一个级联选择框

    名称 在 Excel 中,每一个单元格都有自己的名称.表格横向是字母,纵向是数字,组合起来就是一个单元格的名称. A13 所代表的是 A 列,13 行的单元格.把一组单元格组合起来,加上一个名称,在 ...

  7. jbd2的死锁分析

    已经运行多年的jbd2,它还是死锁了 背景:这个是在centos7的环境上复现的,内核版本为3.10.0-957.27.2.el7 下面列一下我们是怎么排查并解这个问题的. 一.故障现象 oppo云内 ...

  8. 写给前端的 react-native 入门指南

    前言 本文主要介绍 react-native(下称 RN) 的入门, 和前端的异同点 文章不涉及功能的具体实现 选择优势 我们先说说, 为什么很多人会选择使用 RN .他对应的特性和普通 Web 的区 ...

  9. 百度松果菁英班OJ【连载】

    第十六周 2 的 n 次幂 高精度乘法 #include<bits/stdc++.h> using namespace std; vector<int> mul(vector& ...

  10. Cluster table 与性能

    用户数据行存储在文件系统中的堆文件中,而这些行以不确定的顺序存储.如果表最初以插入/复制的顺序加载,那么以后的插入.更新和删除将导致在堆文件中以不可预测的顺序添加行.创建索引创建一个指向堆行的辅助文件 ...