Atcoder Beginner Contest ABC 284 Ex Count Unlabeled Graphs 题解 (Polya定理)
弱化版(其实完全一样)
u1s1,洛谷上这题的第一个题解写得很不错,可以参考
直接边讲Polya定理边做这题
问题引入:n颗珠子组成的手串,每颗珠子有两种不同的颜色, 如果两个手串能够在旋转或翻转之后完全一样,就称它们是等价的,对手串的等价类计数。我们先把手串破环为链,两个长度为n的01序列等价当且仅当能够在循环移位或翻转后完全一样,求等价类数量。
注意两个序列"相等"指的是外表完全相同,"等价"指的是能够通过转化后外表完全相同。
Polya定理说这个问题的答案是:\(\frac 1{|G|}\sum_{g\in G}c(g,X)\)。其中X表示所有外表不同的序列的集合;G表示把所有变换看成置换之后的置换群(置换群的概念请自行搜索);\(c(g,X)\)表示X中满足"将置换g施加到序列x上之后x的外表仍然不变"的元素x的个数,专业点说是不动点的个数。对于任意置换与等价类计数的问题,都可以用这个式子求。
具体证明可以看这里
对于这道题也是一样,这题中X是所有点有编号、点有权值(1-k)、边有权值(1/0表示存在或不存在)的n个点的无向完全图的集合;G是置换群(由于这题中的变换是给节点重新编号,所以G是所有1-n的排列的集合);\(c(g,X)\)表示X中满足"将置换g施加到无向图x上之后x的外表仍然不变"的元素x的个数。
假设现在我们枚举g,考虑求出\(c(g,X)\)。对于g,如果我们把\(i\to g_i\)连有向边,是可以得到若干环的,假设这些环的大小从小到大排列为\(b_1,b_2\cdots b_m\)。对于其中的一条边\(u\to v\),原图中的节点u在经过变换之后它的编号就要变成v了。考虑如果想让变换前后的图外表完全一样,这个图需要满足什么条件。首先g连出的每一个环内的点权值都必须相同,且所有的环必须覆盖[1,k]中的全部颜色(题目要求,用dp预处理方案数即可)。接下来的限制其实跟上面那个弱化版一样,每个长度为\(b_i\)的环内的所有边被分成了\(\lfloor \frac {b_i}2 \rfloor\)类,每一类的权值都必须相等;两个长度为\(b_i,b_j\)的环之间的\(b_ib_j\)条边被分成了\(gcd(b_i,b_j)\)类,每一类的权值都必须相等。
对于一个序列\(b_1,b_2\cdots b_m\),我们已经能快速地用上面的方法算出它对答案的贡献,现在还要知道有多少个g对应这个序列,其实就是个简单的排列组合问题。令\(c_i\)表示b序列中值i出现的次数。对应这个b序列的g的个数为:\(\frac{n!}{\prod_{i=1}^m, b_i!}\cdot (\prod_{i=1}^m (b_i-1)!)\cdot \frac 1{\prod c_i! }\),其中第一部分为多重组合数,用来选出每个环的元素;第二部分是把每个环中的所有元素排成有序环的方案数;第三部分是除掉相同的\(b_i\)算重的次数。
列一下最后答案的式子:\(ans=\sum_{b_1\cdots b_m} \frac 1{\prod b_i\prod c_i!}\cdot dp_{m,k}\cdot 2^{(\sum \lfloor \frac {b_i}2 \rfloor )+\sum_{i,j}gcd(b_i,b_j)}\),其中\(dp_{i,j}\)表示1-i一共i个元素染色,且占了\([1,j]\)中的所有颜色的方案数。
我们直接暴搜枚举\(b\)数组所有可能的情况,然后用上面的方法暴力计算就行。时间复杂度\(O(能过)\)。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define pdd pair <double,double>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back
void fileio()
{
#ifdef LGS
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
}
void termin()
{
#ifdef LGS
std::cout<<"\n\nEXECUTION TERMINATED";
#endif
exit(0);
}
using namespace std;
LL n,k,MOD,ans=0,fac[40],inv[40],rinv[40],dp[40][40];
vector <LL> d;
LL qpow(LL x,LL a)
{
LL res=x,ret=1;
while(a>0)
{
if(a&1) (ret*=res)%=MOD;
a>>=1;
(res*=res)%=MOD;
}
return ret;
}
void dfs(LL sum,LL mx)
{
if(sum==n)
{
LL res=1;
rep(i,d.size()) (res*=rinv[d[i]])%=MOD;
map <LL,LL> mp;rep(i,d.size()) ++mp[d[i]];
for(auto it:mp) (res*=inv[it.se])%=MOD;
(res*=dp[d.size()][k])%=MOD;
LL tot=0;
rep(i,d.size()) tot+=d[i]/2;
rep(i,d.size()) for(int j=i+1;j<d.size();++j) tot+=__gcd(d[i],d[j]);
(res*=qpow(2,tot))%=MOD;
(ans+=res)%=MOD;
return;
}
for(LL nxt=max(mx,1LL);nxt<=n-sum;++nxt)
{
d.pb(nxt);
dfs(sum+nxt,nxt);
d.pop_back();
}
}
int main()
{
fileio();
cin>>n>>k>>MOD;
dp[0][0]=1;
rep(i,n+3) rep(j,k+1) if(dp[i][j])
{
(dp[i+1][j]+=dp[i][j]*j)%=MOD;
(dp[i+1][j+1]+=dp[i][j]*(j+1))%=MOD;
}
fac[0]=1;repn(i,35) fac[i]=fac[i-1]*i%MOD;
rep(i,34) inv[i]=qpow(fac[i],MOD-2),rinv[i]=qpow(i,MOD-2);
dfs(0,0);
cout<<ans<<endl;
termin();
}
Atcoder Beginner Contest ABC 284 Ex Count Unlabeled Graphs 题解 (Polya定理)的更多相关文章
- [题解] Atcoder Beginner Contest ABC 270 G Ex 题解
点我看题 G - Sequence in mod P 稍微观察一下就会发现,进行x次操作后的结果是\(A^xS+(1+\cdots +A^{x-1})B\).如果没有右边那一坨关于B的东西,那我们要求 ...
- [题解] Atcoder Beginner Contest ABC 265 Ex No-capture Lance Game DP,二维FFT
题目 首先明确先手的棋子是往左走的,将其称为棋子1:后手的棋子是往右走的,将其称为棋子2. 如果有一些行满足1在2右边,也就是面对面,那其实就是一个nim,每一行都是一堆石子,数量是两个棋子之间的空格 ...
- AtCoder Beginner Contest 053 ABCD题
A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...
- AtCoder Beginner Contest 100 2018/06/16
A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...
- AtCoder Beginner Contest 076
A - Rating Goal Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Takaha ...
- AtCoder Beginner Contest 068 ABCD题
A - ABCxxx Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement This contes ...
- AtCoder Beginner Contest 161
比赛链接:https://atcoder.jp/contests/abc161/tasks AtCoder Beginner Contest 161 第一次打AtCoder的比赛,因为是日本的网站终于 ...
- AtCoder Beginner Contest 224
AtCoder Beginner Contest 224 A - Tires 思路分析: 判断最后一个字符即可. 代码如下: #include <bits/stdc++.h> using ...
- KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解
KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...
- AtCoder Beginner Contest 184 题解
AtCoder Beginner Contest 184 题解 目录 AtCoder Beginner Contest 184 题解 A - Determinant B - Quizzes C - S ...
随机推荐
- 什么是Scrum?Scrum的核心要点和精髓
有点长,期望你能通过本文彻底了解 Scrum. 上一篇文章<研发效能组织能力建设之特性团队FeatureTeam(上)>,我们介绍了一个非常有意思且高效的组织模式-特性团队.我们首先介绍了 ...
- 【NOI2016】 循环之美 题解
Solution 由数论基础知识 答案即为$$\sum_{i = 1}^n\sum_{j = 1}^m[i \perp j][j \perp k]$$ 莫反套路可化为$$\sum_{d = 1}\mu ...
- 前端开发日常——CSS动画无限轮播
近来没有什么值得写的东西,空闲的时候帮前端的同学做了些大屏上的展示模块,就放在这里写写吧,手把手"需求->设计-> 实现",受众偏新手向. 为了直观便于理解, 直接把结 ...
- FlinkSql之TableAPI详解
一.FlinkSql的概念 核心概念 Flink 的 Table API 和 SQL 是流批统一的 API. 这意味着 Table API & SQL 在无论有限的批式输入还是无限的流式输入下 ...
- centos7离线安装PHP7
环境 centos7.9 PHP7.4.30 准备工作 在编译PHP时会提示一些包版本不够或者缺少某些包,一般选择yum来安装缺少的包,但因为是离线安装,所以可以手动配置本地yum源.先看一下系统版本 ...
- scrapy 如何使用代理 以及设置超时时间
使用代理 1. 单文件spider局部使用代理 entry = 'http://xxxxx:xxxxx@http-pro.abuyun.com:xxx'.format("帐号", ...
- Python基础部分:4、 python语法之注释
目录 一.python语法之注释 1.什么是注释 2.如何编写注释 二.PEP8规范 一.python语法之注释 1.什么是注释 注释用来向用户提示或解释某些代码的作用和功能,它可以出现在代码中的任何 ...
- 第 45 届国际大学生程序设计竞赛(ICPC)亚洲区域赛(济南)-L Bit Sequence
题意 给你两个数l,m,大小为m的数组a,求[0,l]之间满足以下条件的数x的个数: 对于任何i输入[0,m-1],f(x+i)%2=a[i]:f(k):代表k在二进制下1的个数 m的范围<=1 ...
- 「浙江理工大学ACM入队200题系列」问题 A: 零基础学C/C++34—— 3个数比较大小(冒泡排序与选择排序算法)
本题是浙江理工大学ACM入队200题第四套中的A题,同时给出了冒泡排序和选择排序算法 我们先来看一下这题的题面. 由于是比较靠前的题目,这里插一句.各位新ACMer朋友们,请一定要养成仔细耐心看题的习 ...
- 工作中,本人常用到的unzip、zip命令
1. 命令安装 1.1 zip安装 yum install zip 1.2 unzip安装 yum install unzip 2. 常用命令 2.1 常用zip命令 2.1.1 压缩文件 zip x ...