NC14501 大吉大利,晚上吃鸡!
题目
题目描述
最近《绝地求生:大逃杀》风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏。
在游戏中,皮皮和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快递。
当然,有些时候并不能堵桥,皮皮和毛毛会选择在其他的必经之路上蹲点。
K博士作为一个老年人,外加有心脏病,自然是不能玩这款游戏的,但是这并不能妨碍他对这款游戏进行一些理论分析,比如最近他就对皮皮和毛毛的战士很感兴趣。
游戏的地图可以抽象为一张 n 个点 m 条无向边的图,节点编号为 1 到 n ,每条边具有一个正整数的长度。
假定大魔王都会从 S 点出发到达 T 点( S 和 T 已知),并且只会走最短路,皮皮和毛毛会在 A 点和 B 点埋伏大魔王。
为了保证一定能埋伏到大魔王,同时又想留大魔王一条生路,皮皮和毛毛约定 A 点和 B 点必须满足:
\1. 大魔王所有可能路径中,必定会经过 A 点和 B 点中的任意一点
\2. 大魔王所有可能路径中,不存在一条路径同时经过 A 点和 B 点
K博士想知道,满足上面两个条件的 A,B 点对有多少个,交换 A,B 的顺序算相同的方案。
输入描述
第一行输入四个整数 n,m,S,T(\(1≤n≤5×10^4,1≤m≤5×10^4,1≤S,T≤n\)),含义见题目描述。
接下来输入 m 行,每行输入三个整数 u,v,w(\(1≤u,v≤n,1≤w≤10^9\))表示存在一条长度为 w 的边链接 u 和 v 。
输出描述
输出一行表示答案。
示例1
输入
7 7 1 7
1 2 2
2 4 2
4 6 2
6 7 2
1 3 2
3 5 4
5 7 2
输出
6
说明
合法的方案为 <2,3>,<2,4>,<4,3>,<4,5>,<6,3>,<6,5>。
备注
\(1≤n≤5×10^4,1≤m≤5×10^4,1≤w≤10^9\)
题解
知识点:最短路,拓扑排序,计数dp。
这道题分几步走:
- 跑正反两次最短路,得到 \(f\) ,再求经过每个点 \(u\) 的最短路条数 \(ff[u] = f[0][u]\cdot f[1][u]\) ,不在最短路上的点应为 \(0\) 。同时,记录方案数到点的映射 \(mp[ff[u]][u] = 1\) 方便最后统计。注意不在最短路上的点也要统计,即 \(mp[0][u] = 1\) ,因为两个点可以有一个点不在最短路上,而另一个点通过了所有最短路。因为方案数本身过大,所以取了模,虽然很玄学,但能过。
- 根据第一步得到的 \(dis\) 新建一个最短路DAG图,即只包括最短路上的边且是单向的。在最短路图上跑一边拓扑排序得到拓扑序。对于每个点 \(u\) ,根据拓扑序求出可以从起点开始经过哪些点到达 \(tran[0][u]\),以及拓扑逆序求出经过哪些点到达终点 \(tran[1][u]\) 。这部分用
bitset
实现刚刚好。 - 统计对于每个点 \(u\) 满足以下两个条件的点 \(v\) :\(S\) 经过 \(u\) 到 \(T\) 都不可能被经过,并且 \(ff[u] + ff[v] = ff[T]\) 。前者保证 \(u,v\) 不出现在一条最短路上满足条件2,后者保证 \(u,v\) 不重不漏的划分了所有路径,即从 \(S\) 到 \(T\) 必定经过 \(u,v\) 满足条件1。
最后,因为交换A,B顺序算一个答案,所以统计的答案除以 \(2\) 。
注意,有可能 \(S\) 不能到达 \(T\) ,即 \(ff[T] = 0\) ,此时应该A,B可以是任意点,答案是 \(\frac{n(n-1)}{2}\) 直接输出。因为最短路图建不成,所以不能继续走后面的步骤,应该直接输出。
时间复杂度 \(O((n+m)\log m) + O(n+m) + O(nm)\)
空间复杂度 \(O(n+m)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
template<class T>
struct Graph {
struct edge {
int v, nxt;
T w;
};
int idx;
vector<int> h;
vector<edge> e;
Graph(int n, int m) :idx(0), h(n + 1), e(m + 1) {}
void init(int n) {
idx = 0;
h.assign(n + 1, 0);
}
void add(int u, int v, T w) {
e[++idx] = edge{ v,h[u],w };
h[u] = idx;
}
};
const int N = 50007, M = 50007 << 1, mod = 1e9 + 7;
Graph<int> g(N, M), g2(N, M);
int n, m;
vector<vector<ll>> dis(2, vector<ll>(N));
vector<vector<int>> f(2, vector<int>(N));
vector<int> ff(N);
map<int, bitset<N>> mp;
void dijkstra(int st, vector<ll> &dis, vector<int> &f) {
dis.assign(n + 1, 0x3f3f3f3f3f3f3f3f);
vector<bool> vis(n + 1, false);
struct node {
int v;
ll w;
bool operator<(const node &a)const {
return w > a.w;
}
};
priority_queue<node> pq;
dis[st] = 0;
f[st] = 1;
pq.push(node{ st,0 });
while (!pq.empty()) {
int u = pq.top().v;
pq.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = g.h[u];i;i = g.e[i].nxt) {
int v = g.e[i].v, w = g.e[i].w;
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
pq.push(node{ v,dis[v] });
f[v] = f[u];
}
else if (dis[v] == dis[u] + w) {
f[v] = (f[v] + f[u]) % mod;
}
}
}
}
vector<int> topo;
void toposort() {
vector<int> deg(n + 1, 0);
queue<int> q;
for (int i = 1;i <= g2.idx;i++) deg[g2.e[i].v]++;
for (int i = 1;i <= n;i++) if (!deg[i]) q.push(i);
while (!q.empty()) {
int u = q.front();
topo.push_back(u);
q.pop();
for (int i = g2.h[u];i;i = g2.e[i].nxt) {
int v = g2.e[i].v;
deg[v]--;
if (!deg[v]) q.push(v);
}
}
}
bitset<N> tran[2][N];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int S, T;
cin >> n >> m >> S >> T;
for (int i = 1;i <= m;i++) {
int u, v, w;
cin >> u >> v >> w;
g.add(u, v, w);
g.add(v, u, w);
}
//分别得到S,T到各个点的最短路和方案数
dijkstra(S, dis[0], f[0]);
dijkstra(T, dis[1], f[1]);
if (f[0][T] == 0)//注意判断不连通的情况(等价于f[1][s]==0)
{
cout << 1LL * n * (n - 1) / 2 << '\n';//A可能情况*B可能情况/2(防止重复)
return 0;
}
//在最短路上的点计算总条数,其他为0;并且统计一个方案数对应的点,方案数取模因为太大,不会被卡
for (int u = 1;u <= n;u++) {
if (dis[0][u] + dis[1][u] == dis[0][T])
ff[u] = 1LL * f[0][u] * f[1][u] % mod;
mp[ff[u]][u] = 1;
}
//用最短路上的边建图
for (int u = 1;u <= n;u++) {
for (int i = g.h[u];i;i = g.e[i].nxt) {
int v = g.e[i].v, w = g.e[i].w;
if (dis[0][u] + dis[1][v] + w == dis[0][T]) g2.add(u, v, w);
}
}
//得到最短路遍历顺序
toposort();
//分别获得起点传递,终点逆传递
for (int i = 0;i < n;i++) {
int u = topo[i];
tran[0][u][u] = 1;
for (int j = g2.h[u];j;j = g2.e[j].nxt) {
int v = g2.e[j].v;
tran[0][v] |= tran[0][u];
}
}
for (int i = n - 1;i >= 0;i--) {
int u = topo[i];
tran[1][u][u] = 1;
for (int j = g2.h[u];j;j = g2.e[j].nxt) {
int v = g2.e[j].v;
tran[1][u] |= tran[1][v];
}
}
//计算答案:两点不能在同一条最短路上,即g2中没有传递性;最短路至少通过一点,即两点方案数之和等于总方案数
ll ans = 0;
for (int u = 1;u <= n;u++) {
ans += ((~(tran[0][u] | tran[1][u])) & mp[(ff[T] - ff[u] + mod) % mod]).count();
}
cout << ans / 2 << '\n';
return 0;
}
NC14501 大吉大利,晚上吃鸡!的更多相关文章
- GMA Round 1 大吉大利,晚上吃鸡
传送门 大吉大利,晚上吃鸡 新年走亲访友能干点啥呢,咱开黑吃鸡吧. 这里有32个人,每个人都可能想玩或者不想玩,这样子一共有$2^{32}$种可能.而要开黑当然得4人4人组一队(四人模式),所以说如果 ...
- [BZOJ5109]大吉大利,晚上吃鸡!
[BZOJ5109]大吉大利,晚上吃鸡! 题目大意: 一张\(n(n\le5\times10^4)\)个点\(m(m\le5\times10^4)\)条边的无向图,节点编号为\(1\)到\(n\),边 ...
- 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP
[BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...
- bzoj5109: [CodePlus 2017]大吉大利,晚上吃鸡!
Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏中,皮皮 和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快 ...
- 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!(dij+bitset)
从S出发跑dij,从T出发跑dij,顺便最短路计数. 令$F(x)$为$S$到$T$最短路经过$x$的方案数,显然这个是可以用$S$到$x$的方案数乘$T$到$x$的方案数来得到. 然后第一个条件就变 ...
- BZOJ5109 CodePlus 2017大吉大利,晚上吃鸡!(最短路+拓扑排序+bitset)
首先跑正反两遍dij求由起点/终点到某点的最短路条数,这样条件一就转化为f(S,A)*f(T,A)+f(S,B)*f(T,B)=f(S,T).同时建出最短路DAG,这样图中任何一条S到T的路径都是最短 ...
- 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!
n<=50000,m<=50000的图,给s和t,问有多少点对$(a,b)$满足 嗯. 不会. 首先最短路DAG造出来,然后两个条件转述一下:条件一,$N_a$表示从s到t经过a的路径,$ ...
- [Code+#1]大吉大利,晚上吃鸡!
输入输出样例 输入样例#1: 7 7 1 7 1 2 2 2 4 2 4 6 2 6 7 2 1 3 2 3 5 4 5 7 2 输出样例#1: 6 输入样例#2: 5 5 1 4 1 2 1 1 3 ...
- [BZOJ5109/CodePlus2017]大吉大利,晚上吃鸡!
Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏中,皮皮和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快递 ...
- luogu4061 大吉大利,晚上吃鸡!
链接 最短路径\(dag\),一道好题. 题目大意:求一张图中满足下列要求的点对\((i,j)\)数量: 所有最短路径必定会经过 \(i\) 点和 \(j\) 点中的任意一点. 不存在一条最短路同时经 ...
随机推荐
- Linux-->开关机+用户管理指令
关机与重启指令 shutdown关机 语法: shutdown -h 关机时间 now 立刻 1 1分种后 shutdown重启 语法: shutdown -r 重启时间 now 立刻 1 1分钟后 ...
- 创建Vue工程常用的命令
创建一个vue项目的步骤 1.创建一个名称为myapp的工程 vue init webpack myapp 2.进入工程目录 cd myapp 3.安装 vue-router npm install ...
- 了解 Flutter 开发者们的 IDE 使用情况
作者 / JaYoung Lee, UX Researcher at Google Google 的 Flutter 团队负责构建和维护 Android Studio (基于 IntelliJ-IDE ...
- json文本数据
本文主要针对三个问题:json格式数据,text数据与json数据之间的关系,json和python字典的区别 1.什么是json数据? json是文本数据,可以在网络中传输的通用数据,它是具有特定格 ...
- 42.JSON Web Token认证
JSON Web Token认证介绍 简称JWT认证,一般用于用户认证 JWT是一种相当新的标准,可用于基于token的身份验证 与内置的TokenAuthentication方案不同,JWT不需要使 ...
- 前端常见loading动画
loading动画是前端页面加载时必不可少的元素,好看合适的加载动画会极大的提升用户体验与系统的交互效果.下面为大家提供几种简单的加载动画效果,如果帮助到你了请点赞评论. 1.无限循环的圆圈 < ...
- .NET 7.0 重磅发布及资源汇总
2022-11-8 .NET 7.0 作为微软的开源跨平台开发平台正式发布.微软在公告中表示.NET 7为您的应用程序带来了C# 11 / F# 7,.NET MAUI,ASP.NET Core/Bl ...
- MYSQL5.7 保姆级安装教程
现在要是说mysql是什么东西,就不礼貌了 虽然有的同学没有进行系统的深入学习,但应该也有个基本概念 [不了解也没关系,后续会进行mysql专栏讲解]简单来说,存储数据的 学习mysql,就要先安装它 ...
- ThinkPhp5 自定义异常处理类
在项目的开发过程中异常抛出尤为重要不仅能够做出友好提示帮助掩盖我们伟大的程序员们尴尬的瞬间,还能做到提示开发人员代码白编写的错误,下面进行自定义异常抛出类,纯属个人理解,希望大家指正 首先在框架中我们 ...
- Docker遇见golang https://www.jianshu.com/p/37693eb8f646
golang logo 在我国古代,传说天庭中有种种天兵天将,有看守四大天门的(docker0网桥),有负责传话的门将(REST API),有负责人间和天界联络的,如财神爷,土地公等(NAT,DNS) ...