NC14501 大吉大利,晚上吃鸡!
题目
题目描述
最近《绝地求生:大逃杀》风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏。
在游戏中,皮皮和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快递。
当然,有些时候并不能堵桥,皮皮和毛毛会选择在其他的必经之路上蹲点。
K博士作为一个老年人,外加有心脏病,自然是不能玩这款游戏的,但是这并不能妨碍他对这款游戏进行一些理论分析,比如最近他就对皮皮和毛毛的战士很感兴趣。
游戏的地图可以抽象为一张 n 个点 m 条无向边的图,节点编号为 1 到 n ,每条边具有一个正整数的长度。
假定大魔王都会从 S 点出发到达 T 点( S 和 T 已知),并且只会走最短路,皮皮和毛毛会在 A 点和 B 点埋伏大魔王。
为了保证一定能埋伏到大魔王,同时又想留大魔王一条生路,皮皮和毛毛约定 A 点和 B 点必须满足:
\1. 大魔王所有可能路径中,必定会经过 A 点和 B 点中的任意一点
\2. 大魔王所有可能路径中,不存在一条路径同时经过 A 点和 B 点
K博士想知道,满足上面两个条件的 A,B 点对有多少个,交换 A,B 的顺序算相同的方案。
输入描述
第一行输入四个整数 n,m,S,T(\(1≤n≤5×10^4,1≤m≤5×10^4,1≤S,T≤n\)),含义见题目描述。
接下来输入 m 行,每行输入三个整数 u,v,w(\(1≤u,v≤n,1≤w≤10^9\))表示存在一条长度为 w 的边链接 u 和 v 。
输出描述
输出一行表示答案。
示例1
输入
7 7 1 7
1 2 2
2 4 2
4 6 2
6 7 2
1 3 2
3 5 4
5 7 2
输出
6
说明
合法的方案为 <2,3>,<2,4>,<4,3>,<4,5>,<6,3>,<6,5>。
备注
\(1≤n≤5×10^4,1≤m≤5×10^4,1≤w≤10^9\)
题解
知识点:最短路,拓扑排序,计数dp。
这道题分几步走:
- 跑正反两次最短路,得到 \(f\) ,再求经过每个点 \(u\) 的最短路条数 \(ff[u] = f[0][u]\cdot f[1][u]\) ,不在最短路上的点应为 \(0\) 。同时,记录方案数到点的映射 \(mp[ff[u]][u] = 1\) 方便最后统计。注意不在最短路上的点也要统计,即 \(mp[0][u] = 1\) ,因为两个点可以有一个点不在最短路上,而另一个点通过了所有最短路。因为方案数本身过大,所以取了模,虽然很玄学,但能过。
- 根据第一步得到的 \(dis\) 新建一个最短路DAG图,即只包括最短路上的边且是单向的。在最短路图上跑一边拓扑排序得到拓扑序。对于每个点 \(u\) ,根据拓扑序求出可以从起点开始经过哪些点到达 \(tran[0][u]\),以及拓扑逆序求出经过哪些点到达终点 \(tran[1][u]\) 。这部分用
bitset
实现刚刚好。 - 统计对于每个点 \(u\) 满足以下两个条件的点 \(v\) :\(S\) 经过 \(u\) 到 \(T\) 都不可能被经过,并且 \(ff[u] + ff[v] = ff[T]\) 。前者保证 \(u,v\) 不出现在一条最短路上满足条件2,后者保证 \(u,v\) 不重不漏的划分了所有路径,即从 \(S\) 到 \(T\) 必定经过 \(u,v\) 满足条件1。
最后,因为交换A,B顺序算一个答案,所以统计的答案除以 \(2\) 。
注意,有可能 \(S\) 不能到达 \(T\) ,即 \(ff[T] = 0\) ,此时应该A,B可以是任意点,答案是 \(\frac{n(n-1)}{2}\) 直接输出。因为最短路图建不成,所以不能继续走后面的步骤,应该直接输出。
时间复杂度 \(O((n+m)\log m) + O(n+m) + O(nm)\)
空间复杂度 \(O(n+m)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
template<class T>
struct Graph {
struct edge {
int v, nxt;
T w;
};
int idx;
vector<int> h;
vector<edge> e;
Graph(int n, int m) :idx(0), h(n + 1), e(m + 1) {}
void init(int n) {
idx = 0;
h.assign(n + 1, 0);
}
void add(int u, int v, T w) {
e[++idx] = edge{ v,h[u],w };
h[u] = idx;
}
};
const int N = 50007, M = 50007 << 1, mod = 1e9 + 7;
Graph<int> g(N, M), g2(N, M);
int n, m;
vector<vector<ll>> dis(2, vector<ll>(N));
vector<vector<int>> f(2, vector<int>(N));
vector<int> ff(N);
map<int, bitset<N>> mp;
void dijkstra(int st, vector<ll> &dis, vector<int> &f) {
dis.assign(n + 1, 0x3f3f3f3f3f3f3f3f);
vector<bool> vis(n + 1, false);
struct node {
int v;
ll w;
bool operator<(const node &a)const {
return w > a.w;
}
};
priority_queue<node> pq;
dis[st] = 0;
f[st] = 1;
pq.push(node{ st,0 });
while (!pq.empty()) {
int u = pq.top().v;
pq.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = g.h[u];i;i = g.e[i].nxt) {
int v = g.e[i].v, w = g.e[i].w;
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
pq.push(node{ v,dis[v] });
f[v] = f[u];
}
else if (dis[v] == dis[u] + w) {
f[v] = (f[v] + f[u]) % mod;
}
}
}
}
vector<int> topo;
void toposort() {
vector<int> deg(n + 1, 0);
queue<int> q;
for (int i = 1;i <= g2.idx;i++) deg[g2.e[i].v]++;
for (int i = 1;i <= n;i++) if (!deg[i]) q.push(i);
while (!q.empty()) {
int u = q.front();
topo.push_back(u);
q.pop();
for (int i = g2.h[u];i;i = g2.e[i].nxt) {
int v = g2.e[i].v;
deg[v]--;
if (!deg[v]) q.push(v);
}
}
}
bitset<N> tran[2][N];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int S, T;
cin >> n >> m >> S >> T;
for (int i = 1;i <= m;i++) {
int u, v, w;
cin >> u >> v >> w;
g.add(u, v, w);
g.add(v, u, w);
}
//分别得到S,T到各个点的最短路和方案数
dijkstra(S, dis[0], f[0]);
dijkstra(T, dis[1], f[1]);
if (f[0][T] == 0)//注意判断不连通的情况(等价于f[1][s]==0)
{
cout << 1LL * n * (n - 1) / 2 << '\n';//A可能情况*B可能情况/2(防止重复)
return 0;
}
//在最短路上的点计算总条数,其他为0;并且统计一个方案数对应的点,方案数取模因为太大,不会被卡
for (int u = 1;u <= n;u++) {
if (dis[0][u] + dis[1][u] == dis[0][T])
ff[u] = 1LL * f[0][u] * f[1][u] % mod;
mp[ff[u]][u] = 1;
}
//用最短路上的边建图
for (int u = 1;u <= n;u++) {
for (int i = g.h[u];i;i = g.e[i].nxt) {
int v = g.e[i].v, w = g.e[i].w;
if (dis[0][u] + dis[1][v] + w == dis[0][T]) g2.add(u, v, w);
}
}
//得到最短路遍历顺序
toposort();
//分别获得起点传递,终点逆传递
for (int i = 0;i < n;i++) {
int u = topo[i];
tran[0][u][u] = 1;
for (int j = g2.h[u];j;j = g2.e[j].nxt) {
int v = g2.e[j].v;
tran[0][v] |= tran[0][u];
}
}
for (int i = n - 1;i >= 0;i--) {
int u = topo[i];
tran[1][u][u] = 1;
for (int j = g2.h[u];j;j = g2.e[j].nxt) {
int v = g2.e[j].v;
tran[1][u] |= tran[1][v];
}
}
//计算答案:两点不能在同一条最短路上,即g2中没有传递性;最短路至少通过一点,即两点方案数之和等于总方案数
ll ans = 0;
for (int u = 1;u <= n;u++) {
ans += ((~(tran[0][u] | tran[1][u])) & mp[(ff[T] - ff[u] + mod) % mod]).count();
}
cout << ans / 2 << '\n';
return 0;
}
NC14501 大吉大利,晚上吃鸡!的更多相关文章
- GMA Round 1 大吉大利,晚上吃鸡
传送门 大吉大利,晚上吃鸡 新年走亲访友能干点啥呢,咱开黑吃鸡吧. 这里有32个人,每个人都可能想玩或者不想玩,这样子一共有$2^{32}$种可能.而要开黑当然得4人4人组一队(四人模式),所以说如果 ...
- [BZOJ5109]大吉大利,晚上吃鸡!
[BZOJ5109]大吉大利,晚上吃鸡! 题目大意: 一张\(n(n\le5\times10^4)\)个点\(m(m\le5\times10^4)\)条边的无向图,节点编号为\(1\)到\(n\),边 ...
- 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP
[BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...
- bzoj5109: [CodePlus 2017]大吉大利,晚上吃鸡!
Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏中,皮皮 和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快 ...
- 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!(dij+bitset)
从S出发跑dij,从T出发跑dij,顺便最短路计数. 令$F(x)$为$S$到$T$最短路经过$x$的方案数,显然这个是可以用$S$到$x$的方案数乘$T$到$x$的方案数来得到. 然后第一个条件就变 ...
- BZOJ5109 CodePlus 2017大吉大利,晚上吃鸡!(最短路+拓扑排序+bitset)
首先跑正反两遍dij求由起点/终点到某点的最短路条数,这样条件一就转化为f(S,A)*f(T,A)+f(S,B)*f(T,B)=f(S,T).同时建出最短路DAG,这样图中任何一条S到T的路径都是最短 ...
- 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!
n<=50000,m<=50000的图,给s和t,问有多少点对$(a,b)$满足 嗯. 不会. 首先最短路DAG造出来,然后两个条件转述一下:条件一,$N_a$表示从s到t经过a的路径,$ ...
- [Code+#1]大吉大利,晚上吃鸡!
输入输出样例 输入样例#1: 7 7 1 7 1 2 2 2 4 2 4 6 2 6 7 2 1 3 2 3 5 4 5 7 2 输出样例#1: 6 输入样例#2: 5 5 1 4 1 2 1 1 3 ...
- [BZOJ5109/CodePlus2017]大吉大利,晚上吃鸡!
Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏中,皮皮和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快递 ...
- luogu4061 大吉大利,晚上吃鸡!
链接 最短路径\(dag\),一道好题. 题目大意:求一张图中满足下列要求的点对\((i,j)\)数量: 所有最短路径必定会经过 \(i\) 点和 \(j\) 点中的任意一点. 不存在一条最短路同时经 ...
随机推荐
- C++ 使用栈求解中缀、后缀表达式的值
1. 前言 表达式求值对于有知识积累的你而言,可以通过认知,按运算符的优先级进行先后运算. 但对计算机而言,表达式仅是一串普通的信息而已,需要通过编码的方式告诉计算机运算法则,这个过程中栈起到了至关重 ...
- CSAPP实验attacklab
attacklab 实验报告和答案文件都在 https://github.com/thkkk/attacklab
- Java并发编程 | Synchronized原理与使用
Java提供了多种机制实现多线程之间有需要同步执行的场景需求.其中最基本的是Synchronized ,实现上使用对象监视器( Monitor ). Java中的每个对象都是与线程可以锁定或解锁的对象 ...
- 亚马逊云 RDB数据故障转移(多可用区)
RDB关系数据库(Relational Database,RDB) 创建名为VPC for RDS的vpc 两个可用区,两组公内网 创建安全组 创建RDS数据库实例用的数据库子网组 创建RDS数据库实 ...
- 抓包分析 TCP 握手和挥手
前言 首先需要明确的是 TCP 是一个可靠传输协议,它的所有特点最终都是为了这个可靠传输服务.在网上看到过很多文章讲 TCP 连接的三次握手和断开连接的四次挥手,但是都太过于理论,看完感觉总是似懂非懂 ...
- 论文笔记 - GRAD-MATCH: A Gradient Matching Based Data Subset Selection For Efficient Learning
Analysis Coreset 是带有权重的数据子集,目的是在某个方面模拟完整数据的表现(例如损失函数的梯度,既可以是在训练数据上的损失,也可以是在验证数据上的损失): 给出优化目标的定义: $w^ ...
- 真正“搞”懂HTTP协议03之时间穿梭
上一篇我们简单的介绍了一下DoD模型和OSI模型,还着重的讲解了TCP的三次握手和四次挥手,让我们在空间层面,稍稍宏观的了解了HTTP所依赖的底层模型,那么这一篇,我们来追溯一下HTTP的历史,看一看 ...
- JetBrains新产品Aqua——自动化测试开发工具(抢鲜体验)
转载请注明出处️ 作者:测试蔡坨坨 原文链接:caituotuo.top/9a093c88.html 你好,我是测试蔡坨坨. 随着行业内卷越来越严重,自动化测试已成为测试工程师的必备技能,谈及自动化测 ...
- Terminal(oh-my-zsh) 美化
如果你使用Mac进行开发,那么Terminal.app应该是你使用非常频繁的app了.初体验Terminal时你可能觉得单调乏味,阅读密密麻麻的内容也很费劲.但是如果你跟着我一起配置它,就会发现你平时 ...
- 使用 Go HTTP 框架 Hertz 进行 JWT 认证
前言 上一篇文章简单介绍了一个高性能的 Go HTTP 框架--Hertz,本篇文章将围绕 Hertz 开源仓库的一个 demo,讲述如何使用 Hertz 完成 JWT 的认证与授权流程. 这里要说明 ...