直觉告诉我一般情况下,询问古怪的题都是分块,但是这一类题不太一样。

思考一个奇怪的暴力,每次询问的时候询问 \(f(1,k),f(2,k+1),f(3,k+2),...f(n-k+1,n)\),然后加起来一定是答案。

差分,思考 \(f(l+1,r+1)-f(l,r)\) 是多少。容易知道其对答案的贡献为 \((n-r)\)。

考虑 \(l\) 和 \(r+1\) 两个位置。

接下来设 \(pre[i]\) 为上一个颜色与自身相同的最靠右的位置,\(nxt[i]\) 类似。

可以发现 \(f(l+1,r+1)-f(l,r)=[pre[r+1]<l]-[nxt[l]>r+1]\)

问题转化为 \(\sum_{i=1}^{n-k}([pre[i+k]<i]-[nxt[i]>i+k])(n+1-k-i)\)。

最后只需要加上 \([1,k]\) 的颜色个数乘上 \(n-k+1\) 即可。

推一推上面的东西:

\[\sum_{i=1}^{n-k}([k<(i+k-pre[i+k])]-[nxt[i]-i>k])(n+1-k-i)
\]

这是经典的二维偏序,因为带修所以可以随随便便做到 \(O(n\log^2n)\)。但是这太简单了!所以其实有 \(O(n\log n)\) 的做法。

注意到后面的权值随随便便维护,所以我们只需要维护这个范围即可。

设 \(x[i]=i-pre[i],y[i]=nxt[i]-i\),那么我们询问的实际上是 \((\sum_{i=k+1}^n[k<x[i]](n-i+1))+(\sum_{i=1}^{n-k}[k<y[i]](n-k-i+1))\)。

注意到很明显在 \(i\leq k\) 时有 \(x[i]\leq k\),且 \(n-k+1\leq i\) 时也有 \(y[i]\leq k\),所以实际上这两部分都不会被算入贡献,直接开两颗线段树即可。

至于如何 \(O(n\log n)\) 询问前缀颜色个数,用 \(pre\) 和 \(nxt\) 随便维护一下就好了,具体可以参考 BSOJ7791。

BSOJ7526口胡的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  3. BZOJ 口胡记录

    最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...

  4. Atcoder/Topcoder 口胡记录

    Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...

  5. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  6. 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图

    关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...

  7. 「口胡题解」「CF965D」Single-use Stones

    目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...

  8. PKUSC 2022 口胡题解

    \(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...

  9. 「线性基」学习笔记and乱口胡总结

    还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...

随机推荐

  1. SpringBeanUtils的部分方法类

    原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/12060553.html SpringBeanUtils的部分方法类: import java. ...

  2. iOS,蓝牙开发!!--By帮雷

    iOS的蓝牙开发大致有以下几种方式. 1 GameKit.framework [只能存在于iOS设备之间,多用于游戏 能搜索到的demo比较多,不确切说名字了,code4app里面就有] 2 Core ...

  3. Linux文件系统与日志分析的了解

    Linux文件系统与日志分析 1.inode和block概述 2.模拟inode耗尽实验 3.ext类型文件恢复 4.xfs类型文件恢复 5.日志文件 6.日志分析 1.文件:文件是存储在硬盘上的,硬 ...

  4. Python--操作列表

    Python--操作列表 目录 Python--操作列表 一.遍历整个列表 1. 深入研究循环 2. 在for循环中执行更多操作 3. 在for循环结束后执行一些操作 二.避免缩进错误 1. 忘记缩进 ...

  5. Lesson14——NumPy 字符串函数之 Par3:字符串信息函数

    NumPy 教程目录 1 字符串信息函数 1.1 numpy.char.count char.count(a, sub, start=0, end=None) 返回一个数组,其中包含 [start, ...

  6. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  7. 树莓派使用docker安装青龙面板和改面板端口号

    配置环境 系统:Raspbian 11(64位) 设备:树莓派4B 系统默认没有防火墙,所以就不用在防火墙中开放端口. 一.安装docker(已安装省略) 1.安装 curl -fsSL https: ...

  8. Learning Schedules

    近期目标 1. 争取搞定小论文 2. Java SE 学习 3. 剑指Offer每日1-2题

  9. 三行Python代码,让你的数据处理脚本快别人4倍

    Python是一门非常适合处理数据和自动化完成重复性工作的编程语言,我们在用数据训练机器学习模型之前,通常都需要对数据进行预处理,而Python就非常适合完成这项工作,比如需要重新调整几十万张图像的尺 ...

  10. stegsolve.jar压缩包打开和使用方法

    1.stegsolve.jar下载 下载地址:http://www.caesum.com/handbook/Stegsolve.jar 2.stegsolve.jar打开方法 (1)需要下载java并 ...