BSOJ7526口胡
直觉告诉我一般情况下,询问古怪的题都是分块,但是这一类题不太一样。
思考一个奇怪的暴力,每次询问的时候询问 \(f(1,k),f(2,k+1),f(3,k+2),...f(n-k+1,n)\),然后加起来一定是答案。
差分,思考 \(f(l+1,r+1)-f(l,r)\) 是多少。容易知道其对答案的贡献为 \((n-r)\)。
考虑 \(l\) 和 \(r+1\) 两个位置。
接下来设 \(pre[i]\) 为上一个颜色与自身相同的最靠右的位置,\(nxt[i]\) 类似。
可以发现 \(f(l+1,r+1)-f(l,r)=[pre[r+1]<l]-[nxt[l]>r+1]\)
问题转化为 \(\sum_{i=1}^{n-k}([pre[i+k]<i]-[nxt[i]>i+k])(n+1-k-i)\)。
最后只需要加上 \([1,k]\) 的颜色个数乘上 \(n-k+1\) 即可。
推一推上面的东西:
\]
这是经典的二维偏序,因为带修所以可以随随便便做到 \(O(n\log^2n)\)。但是这太简单了!所以其实有 \(O(n\log n)\) 的做法。
注意到后面的权值随随便便维护,所以我们只需要维护这个范围即可。
设 \(x[i]=i-pre[i],y[i]=nxt[i]-i\),那么我们询问的实际上是 \((\sum_{i=k+1}^n[k<x[i]](n-i+1))+(\sum_{i=1}^{n-k}[k<y[i]](n-k-i+1))\)。
注意到很明显在 \(i\leq k\) 时有 \(x[i]\leq k\),且 \(n-k+1\leq i\) 时也有 \(y[i]\leq k\),所以实际上这两部分都不会被算入贡献,直接开两颗线段树即可。
至于如何 \(O(n\log n)\) 询问前缀颜色个数,用 \(pre\) 和 \(nxt\) 随便维护一下就好了,具体可以参考 BSOJ7791。
BSOJ7526口胡的更多相关文章
- Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1
据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...
- 口胡FFT现场(没准就听懂了)&&FFT学习笔记
前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...
- BZOJ 口胡记录
最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...
- Atcoder/Topcoder 口胡记录
Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...
- NOIP2016考前做题(口胡)记录
NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...
- 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...
- 「口胡题解」「CF965D」Single-use Stones
目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...
- PKUSC 2022 口胡题解
\(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...
- 「线性基」学习笔记and乱口胡总结
还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...
随机推荐
- laravel操作Redis排序/删除/列表/随机/Hash/集合等方法全解
Song • 3563 次浏览 • 0 个回复 • 2017年10月简介 Redis模块负责与Redis数据库交互,并提供Redis的相关API支持: Redis模块提供redis与redis.con ...
- Java中的UIManager简单实用(皮肤包)
感谢大佬:https://blog.csdn.net/u010022051/article/details/52671860 注:具体详情请查阅Java API文档 /** * 设置图形界面外观 * ...
- CSS布局居中
1.把margin设置为auto,此方法只能进行水平的居中,且对浮动元素或绝对定位元素无效.
- 关于final关键字
final修饰基本数据类型时 修饰的变量值不可变 final修饰引用数据类型时 修饰的变量地址不可变 值可变 final修饰一个类中的方法时 不可被子类重写 final修饰一个类时 不可被其他类继承 ...
- Docker 中的问题:”invalid reference format: repository name must be lowercase”
在导入镜像的时候出现问题:invalid reference format: repository name must be lowercase 问题解决:镜像命名不能出现大写字母,将大写改为小写即可 ...
- 使用纯swift代码文件制作framework
因为最近我们公司的一个客户要求我们使用swift编写程序并且将API封装成framework的形式提供给他们,所以我就开始了swift实践之路. 程序编写完之后,我就琢磨怎么封装成framework的 ...
- .NET 云原生架构师训练营(权限系统 代码实现 EntityAccess)--学习笔记
目录 开发任务 代码实现 开发任务 DotNetNB.Security.Core:定义 core,models,Istore:实现 default memory store DotNetNB.Secu ...
- 磁盘分区 & Linux 三剑客之 awk
今日内容 磁盘分区 Linux 三剑客之 awk 内容详细 一.磁盘分区 磁盘分区 --> 挂载 步骤 1.关机 2.添加硬盘 3.创建分区 fdisk /dev/sdb or gdisk /d ...
- MySQL架构原理之体系架构
MySQL是最流行的关系型数据库软件之一,由于其体量小.速度快.开源免费.简单易用.维护成本低等,在季军架构中易于扩展.高可用等优势,深受开发者和企业的欢迎,在互联网行业广泛使用. 其系统架构如下: ...
- 2021顶级的开源 BI(商业智能)软件和报表工具
在这个信息化时代,每分每秒都产生海量数据.在海量数据中,挖掘出有用的数据,并且能以较人性化.直观的方式展示这些数据,变得尤为重要.本文将介绍5款顶级开源 BI(商务智能)软件和报表工具,用于商业数据的 ...