晚自习用10min推出结论,太屑了

设 \(S=\sum_{i=1}^n a_i\),很显然每个位置的答案 \(ans_i\) 只和 \(a_i\) 和 \(S\) 有关。让我们打个表,找一下规律:

\[a_i
\]
\[S-a_i
\]
\[nS-2S+a_i
\]
\[n^2S-3nS+3S-a_i
\]
\[n^3S-4n^2S+6nS-4S+a_i
\]

我们发现系数是杨辉三角,也就是二项式系数。

所以答案是:

\[\sum_{i=0}^{T-1}\binom T i(-1)^in^{T-i-1}S+(-1)^Ta_i
\]

二项式定理化简一下,答案就是 \(\frac {(n-1)^T+(-1)^{T+1}} n \times S+(-1)^Ta_i\)。

有没有什么严格的证明?

这里需要用到生成函数。

设 \(f_{T,i}\) 是变换 \(T\) 次后,\(n^{i-1}S\) 的系数。

很明显有 \(f_{T,i}=nf_{T-1,i-1}-f_{T-1,i}\)。

设 \(F_T(x)=\sum_{i=0}^T f_{T,i}x^i\),我们要求的就是 \(\frac {F_T(n)-f_{T,0}} n \times S+f_{T,0}a_i\)。

考虑 \(F_T(x)\) 与 \(F_{T-1}(x)\) 的关系,如果将上面的递推式中的 \(n\) 看做 \(x\),很明显有 \(F_T(x)=(x-1)F_{T-1}(x)\)。

而我们又知道 \(F_0(x)=1\),所以 \(F_T(x)=(x-1)^T\)。

SP2742题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. Idea 如何不通过模板创建支持Maven的JavaWeb项目

    手动与模板创建的区别,请自行体会. 1. 点击创建项目 2. 不勾选骨架 3.填写项目名称以及该Maven项目坐标(groupid.artifactid.version). 在仓库中,以坐标确定项目. ...

  2. nginx实现后端tomcat的负载均衡调度

    一.编译安装nginx 请跳转查阅:编译安装nginx 二.tomcat的二进制安装 请跳转查阅:二进制安装tomcat 三.配置nginx代理 # cat /apps/nginx/conf/ngin ...

  3. Spring系列12: `@Value` `@Resource` `@PostConstruct` `@PreDestroy` 详解

    本文内容 @Resource实现依赖注入 @Value详细使用 @PostConstruct @PreDestroy的使用 @Resource实现依赖注入 前面章节介绍了使用@Autowired注入依 ...

  4. ClassPath资源的读取

    读取ClassPath的资源 在程序中经常有很多资源需要读取,常见的就是配置文件,Java中将文件当作一种资源来处理,可以使用Class或者ClassLoader来处理 一,使用Class类的getS ...

  5. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  6. suse 12 二进制部署 Kubernetets 1.19.7 - 第03章 - 部署flannel插件

    文章目录 1.3.部署flannel网络 1.3.0.下载flannel二进制文件 1.3.1.创建flannel证书和私钥 1.3.2.生成flannel证书和私钥 1.3.3.将pod网段写入et ...

  7. 这个杀手不太冷-kill家族

    文章目录 kill killall pkill 跑路小技巧 kill家族: kill: # 删除执行中的程序或工作 killall: # 使用进程的名称来杀死进程,使用此指令可以杀死一组同名进程 pk ...

  8. [LeetCode]1470. 重新排列数组

    给你一个数组 nums ,数组中有 2n 个元素,按 [x1,x2,...,xn,y1,y2,...,yn] 的格式排列. 请你将数组按 [x1,y1,x2,y2,...,xn,yn] 格式重新排列, ...

  9. 私有化轻量级持续集成部署方案--07-私有NPM仓库-Verdaccio

    提示:本系列笔记全部存在于 Github, 可以直接在 Github 查看全部笔记 对于个人来说,私有NPM仓库 作用性基本很小,但是对于企业,私有NPM仓库 可以保护代码暴露,具有很大的意义. 也是 ...

  10. docker下安装nginx,启动ngixn,修改nginx配置等--超详细

    1.获取nginx版本 docker中nginx版本信息:https://hub.docker.com/_/nginx?tab=tags&page=1&ordering=last_up ...