题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】
设 \(sum=1+2+3+4+\dots+n=\dfrac{n(n+1)}{2}\)。
- 如果 \(2\nmid sum\),则显然没有方案。
- 如果 \(2\mid sum\),则这两个集合的和必为 \(\dfrac{sum}{2}\)。
将 \(\dfrac{sum}{2}\) 作为容量跑 0-1 背包即可。
Code:
#include<iostream>
using namespace std;
const int N=45,SUM=785;
typedef long long ll; //必须开 long long/dk
ll dp[SUM],n,sum;
int main()
{
cin>>n;
sum=(1+n)*n/2; //计算 sum
if (sum&1){cout<<0;return 0;} //特判
sum/=2; dp[0]=1; //初始化
for (int i=1;i<=n;i++)
for (int j=sum;j>=0;j--)
if (j>=i) dp[j]+=dp[j-i]; //i 为重量,价值为 0,算方案数要将 max 换成 sum。
cout<<dp[sum]/2; //输出要 /2
return 0;
}
题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】的更多相关文章
- 题解-洛谷P4139 上帝与集合的正确用法
上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- DP | Luogu P1466 集合 Subset Sums
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...
- 洛谷P1522 [USACO2.4]牛的旅行 Cow Tours
洛谷P1522 [USACO2.4]牛的旅行 Cow Tours 题意: 给出一些牧区的坐标,以及一个用邻接矩阵表示的牧区之间图.如果两个牧区之间有路存在那么这条路的长度就是两个牧区之间的欧几里得距离 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷P2158 【[SDOI2008]仪仗队】
本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P7114 字符串匹配
题面 洛谷P7114 字符串匹配 \(T\) 组测试数据.给定字符串 \(S\),问有多少不同的非空字符串 \(A\),\(B\),\(C\) 满足 \(S=ABABAB...ABC\) 且 \(A\ ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
随机推荐
- Erdos-Renyi随机图的生成方式及其特性
1 随机图生成简介 1.1 \(G_{np}\)和\(G_{nm}\) 以下是我学习<CS224W:Machine Learning With Graphs>[1]中随机图生成部分的笔记, ...
- 如何形象简单地理解java中只有值传递,而没有引用传递?
首先,java中只有值传递,没有引用传递.可以说是"传递的引用(地址)",而不能说是"按引用传递". 按值传递意味着当将一个参数传递给一个函数时,函数接收的是原 ...
- JS 的 new 是个啥?
JS 的 new 是个啥? 本文写于 2019 年 11 月 25 日 new关键字在很多语言里面,总是用于把类实例化,可是 JS 之前就没有"类"这个概念呀. 那 JS 的new ...
- PCIe引脚PRSNT与热插拔
热插拔的基本目的是要让PCIe设备按照规定的顺序.原则,从系统中移除或插入到系统中来,并能正常的工作,且不影响系统的正常运行.事实上,PCIe"热插拔"的关键目的就是为前面面所提到 ...
- redis & redis sentinel
Redis 命令参考 Redis Sentinel Cheat Sheet Redis 哨兵节点之间相互自动发现机制(自动重写哨兵节点的配置文件) Redis哨兵模式(sentinel)学习总结及部署 ...
- MySQL启动与多实例安装
启动方式及故障排查 一.几个问题 1.1 /etc/init.d/mysql 从哪来 cp /usr/local/mysql/support-files/mysql.server /etc/init. ...
- 『忘了再学』Shell基础 — 24、Shell正则表达式的使用
目录 1.正则表达式说明 2.基础正则表达式 3.练习 (1)准备工作 (2)*练习 (3).练习 (4)^和$练习 (5)[]练习 (6)[^]练习 (7)\{n\}练习 (8)\{n,\}练习 ( ...
- dotnet core 也能协调分布式事务啦!
2022 年 5 月 24 日,我们发布了 DBPack v0.1.0 版本,该版本主要 release 了分布式事务功能.在我们的规划里,DBPack 是要支持所有微服务开发语言协调分布式事务的,但 ...
- 【Java面试】请你简单说一下Mysql的事务隔离级别
一个工作了6年的粉丝,去阿里面试,在第一面的时候被问到"Mysql的事务隔离级别". 他竟然没有回答上来,一直在私信向我诉苦. 我说,你只能怪年轻时候的你,那个时候不够努力导致现在 ...
- Vue3.0系列——「vue3.0学习手册」第一期
一.项目搭建 vite是尤大大开发的一款意图取代webpack的工具.其实现原理是利用ES6的import发送请求加载文件的特性.拦截这些请求,做一些编译,省去webpack冗长的打包时间.并将其与R ...