一、多项式求逆

  • 给定一个多项式 \(F(x)\),请求出一个多项式 \(G(x)\), 满足 \(F(x) * G(x) \equiv 1 ( \mathrm{mod\:} x^n )\)。系数对 \(998244353\)取模。
  • 考虑递归求解,当\(F\)的最高次为\(0\)时,\(G_0=F_0^{-1}\)
  • 假设我们知道了\(F(x)\)在模\(x^{\left \lceil \frac{n}{2}\right \rceil}\)意义下的逆元\(G'\)
  • 那么\(F∗G′≡1(\mathrm{mod\:} x^{\left \lceil \frac{n}{2}\right \rceil})\)且\(F∗G≡1(\mathrm{mod\:} x^{\left \lceil \frac{n}{2}\right \rceil})\)
  • 因此 \(G-G'\equiv 0(\mathrm{mod\:} x^{\left \lceil \frac{n}{2}\right \rceil})\)
  • 然后两边平方:\((G-G')^2\equiv 0(\mathrm{mod\:} x^n)\)
  • 所以\(G^2-2GG'+G'^2\equiv0(\mathrm{mod\:} x^n)\)
  • 通乘\(F\)后,由于\(F*G \equiv0(\mathrm{mod\:} x^n)\),所以\(G-2G'+FG'^2\equiv0(\mathrm{mod\:} x^n)\)
  • 最后得到\(G\equiv2G'-FG'^2(\mathrm{mod\:} x^n)\)
  • 总复杂度\(O(n \log n)\)

二、分治FFT

  • 在求卷积的时候,如果后面的数字基于前面的数字,朴素的\(FFT\)就会退化至\(O(n^2 \log n)\)
  • 考虑\(cdq\)分治
  • 我们先求出\(l \rightarrow mid\)的答案,然后考虑它对$mid+1 \rightarrow r $的贡献。
  • 显然,对于\(mid+1 \rightarrow r\)中\(x\)贡献是:

\[\sum_{i=l}^{mid}f[i]g[x-i]
\]

  • 贡献可以用\(FFT\)计算
  • 总复杂度\(O(n \log n)\)

传送门luoguP4721 【模板】分治FFT

Description

给定长度为 \(n-1\)的数组$ g[1],g[2],..,g[n-1]g[1],g[2],..,g[n−1]$,求 \(f[0],f[1],..,f[n-1]f[0],f[1],..,f[n−1]\),其中

\[f[i]=\sum_{j=1}^if[i-j]g[j]
\]

边界为 \(f[0]=1\) 。答案模 \(998244353\) 。

Code-多项式求逆版 

由题可知:

\[f*g=f-1
\]

所以:

\[f\equiv(1-g)^{-1}(\mathrm{mod\:} x^n)
\]

直接多项式求逆就可以啦

复杂度\(O(n\log n)\)

#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define swap(a,b) (a^=b^=a^=b)
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define mod 998244353
#define g 3
#define invg 332748118
#define MN 2097152
ll a[MN],b[MN],c[MN],N,di,invN;
int pos[MN];
bool now;
inline ll fpow(ll x,int m){ll res=1;for(;m;m>>=1,x=x*x%mod) if(m&1)res=res*x%mod;return res;}
inline void NTT(ll *a,int type)
{
register int i,j,p,k;
for(i=0;i<N;++i)if(i<pos[i]) swap(a[i],a[pos[i]]);
for(i=1;i<N;i<<=1)
{
ll wn=fpow(type>0?g:invg,(mod-1)/(i<<1));
for(p=i<<1,j=0;j<N;j+=p)
{
ll w=1;
for(k=0;k<i;++k,w=w*wn%mod)
{
ll X=a[j+k],Y=w*a[j+i+k]%mod;
a[j+k]=(X+Y)%mod;a[j+i+k]=(X-Y+mod)%mod;
}
}
}
}
void solve(int n,ll *a,ll *b)
{
if(n==1){b[0]=fpow(a[0],mod-2);return;}
solve((n+1)>>1,a,b);
for(N=1,di=0;N<(n<<1);N<<=1,++di);
register int i;invN=fpow(N,mod-2);
for(i=0;i<N;++i) pos[i]=(pos[i>>1]>>1)|((i&1)<<(di-1));
for(i=0;i<N;++i) c[i]=a[i]*(i<n);
NTT(c,1),NTT(b,1);
for(i=0;i<N;++i) b[i]=1ll*(2-1ll*c[i]*b[i]%mod+mod)%mod*b[i]%mod;
NTT(b,-1);for(i=0;i<N;++i) b[i]=b[i]*invN%mod;
for(i=n;i<N;++i) b[i]=0;
}
int main()
{
register int n=read(),i;
for(a[0]=1,i=1;i<n;++i) a[i]=(mod-read())%mod;
solve(n,a,b);
for(i=0;i<n;++i) printf("%lld ",b[i]);
return 0;
}

Code-分治FFT版 

复杂度\(O(n\log^2 n)\)

#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define mod 998244353
#define g 3
#define invg 332748118
#define MN 262144
ll G[MN],F[MN],N,di,pos[MN],A[MN],B[MN],invN;
inline ll fpow(ll x,int m){ll res=1;for(;m;m>>=1,x=x*x%mod) if(m&1)res=res*x%mod;return res;}
inline void NTT(ll *a,int type)
{
register int i,j,p,k;
for(i=0;i<N;++i)if(i<pos[i]) std::swap(a[i],a[pos[i]]);
for(i=1;i<N;i<<=1)
{
ll wn=fpow(type>0?g:invg,(mod-1)/(i<<1));
for(p=i<<1,j=0;j<N;j+=p)
{
ll w=1;
for(k=0;k<i;++k,w=w*wn%mod)
{
ll X=a[j+k],Y=w*a[j+i+k]%mod;
a[j+k]=(X+Y)%mod;a[j+i+k]=(X-Y+mod)%mod;
}
}
}
if(type==-1) for(i=0;i<N;++i) a[i]=a[i]*invN%mod;
}
inline void cdqNTT(ll *a,ll *b,int l,int r)
{
if(l==r) return;
register int mid=(l+r)>>1,i,len=r-l+1;
cdqNTT(a,b,l,mid); for(N=1,di=0;N<len<<1;N<<=1,++di);
for(i=0;i<N;++i) pos[i]=(pos[i>>1]>>1)|((i&1)<<(di-1));
invN=fpow(N,mod-2); for(i=0;i<N;++i) A[i]=B[i]=0;
for(i=l;i<=mid;++i) A[i-l]=a[i];
for(i=0;i<=r-l;++i) B[i]=b[i];
NTT(A,1),NTT(B,1);
for(i=0;i<N;++i) A[i]=A[i]*B[i]%mod;
NTT(A,-1); for(int i=mid+1;i<=r;++i) (a[i]+=A[i-l])%=mod;
cdqNTT(a,b,mid+1,r);
}
int main()
{
register int n,i;
n=read();
for(i=1;i<n;++i) G[i]=read();
F[0]=1;
cdqNTT(F,G,0,n-1);
for(i=0;i<n;++i) printf("%lld ",F[i]);
return 0;
}

Blog来自PaperCloud,未经允许,请勿转载,TKS!

多项式求逆/分治FFT 学习笔记的更多相关文章

  1. bzoj 3456 城市规划 多项式求逆+分治FFT

    城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1091  Solved: 629[Submit][Status][Discuss] Desc ...

  2. [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂

    多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...

  3. CF848E Days of Floral Colours——DP+多项式求逆/分治NTT

    官方题解:http://codeforces.com/blog/entry/54233 就是由简入繁 1.序列处理,只考虑一个半圆 2.环形处理(其实这个就是多了旋转同构) 然后基于分割线邻居的跨越与 ...

  4. 分治FFT学习笔记

    用途 在\(O(n\log^2 n)\)的时间内做诸如 \[ f_n=\sum_{i=0}^{n-1} f_ig_{n-i} \] 或是 \[ f_n=\sum_{i=0}^{n-1} f_if_{n ...

  5. 分治 FFT学习笔记

    先给一道luogu板子题:P4721 [模板]分治 FFT 今天模拟有道题的部分分做法是分治fft,于是就学了一下.感觉不是很难,国赛上如果推出式子的话应该能写出来. 分治fft用来解决这么一个式子\ ...

  6. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  8. 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln

    题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...

  9. [总结]多项式求逆代替分治 $\text{FFT}$

    目录 问题提出 求逆代替分治 代码实现 由于我懒得不想学蠢得学不会分治 \(\text{FFT}\) ,发现可以用多项式求逆来完整地代替... 文章节选自分治 FFT 与多项式求逆,转载方便自己查看. ...

随机推荐

  1. springboot项目实用代码整理

    // 判断JSONOBJECT是否为空 CommonUtils.checkJSONObjectIsEmpty(storeInfo) // 判断字符串是否为空," "也为空 Stri ...

  2. ribbon的理解

    什么是ribbon? Ribbo是一个基于HTTP和TCP的客户端负载均衡器 什么是客户端负载均衡? 客户端负载均衡和服务端负载均衡最大的区别在于服务清单所存储的位置. 在客户端负载均衡中,所有的客户 ...

  3. pdm文件打开方式

    转自:https://blog.csdn.net/qq_36855191/article/details/79299216 pdm打开网站:http://www.dmanywhere.cn/

  4. Java 之 ObjectOutputStream 类

    ObjectOutputStream 类 1.概述 java.io.ObjectOutputStream extends OutputStream ObjectOutputStream:对象的序列化流 ...

  5. FICO-财务凭证验证及替代

    转载:https://wenku.baidu.com/view/9e2dae57d15abe23492f4d39.html?sxts=1561613818537 https://wenku.baidu ...

  6. iOS毛玻璃效果的实现方法

    ios开发中常常用到的毛玻璃效果实现方法 iOS8以后使用系统里的UIBlurEffect可以实现,UIBlurEffect继承自UIVisualEffect UIBlurEffectStyle有三个 ...

  7. prometheus监控(小试牛刀)

    prometheus监控(小试牛刀) 环境:全部服务都是基于docker运行 本文略微草率,好文章在这里,特别好如下: https://www.cnblogs.com/tchua/p/11120228 ...

  8. Ubuntu:一个部署好的tomcat应用(war包)怎么用Nginx实现动静分离?

    今天想把之前的一个demo用Nginx把资源分离开来,在网上看了一天,整整弄了一天,硬是没弄出来. 要么全是同样的内容的,要么就是环境跟我这里不一样的.再加上对Nginx没接触过,给我都整哭了差点. ...

  9. NSIP

    1. 第一章 信息安全概述 信息:信息是有意义的数据,具有一定的价值,是一种适当保护的资产,数据是是客观事务属性的记录,是信息的具体表现形式,数据经过加工处理之后 就是信息,而信息需要经过数字处理转换 ...

  10. evpp return index.html

    https://github.com/yuqingtong1990/ggtalk_server/blob/99f0f85c683dc0a0c3e76dcae611f60f6456eed6/server ...