$\newcommand{\dp}{\mathsf{dp}}$
$\newcommand{\next}{\mathsf{next}}$

Let $S$ be a string of lower case English letters. If there can be found all subsequences of length $L$ in $S$, then $S$ can be divided into $L$ segments, each contains all the 26 letters, which implies length of $S$ is at least $26L$.

This observation leads us to a solution. Let $\dp[i]$ be the maximum number of the aforementioned segments that the suffix of $S$ that starts at index $i$ can be divided into. The DP can be done in $O(|S|)$ time. The shortest string that is not a subsequence of $S$ has a length of $M = \dp[0] + 1$ ($S$ is 0-indexed).

Let $\next[i][j]$ be the position of the first occurrence of letter $j$ to the right of position $i$ (including position $i$). We can compute the $\next$ array in $O(26|S|)$ time.

Using the $\next$ and $\dp$ arrays, we can construct the answer as follows:

Start with an empty string $T$. Iterate the $\dp[0] + 1$ positions of the answer string from left to right. For each position $i$, iterate over the letters from 'a' to 'z'. For each letter $j$, check whether it is possible to get an answer if we append $j$ to $T$. Let $k$ be position of the last letter of the first occurrence of $Tj$ in $S$ as a subsequence, it is ok to append letter $j$ to $T$ if the suffix $S[k + 1, |S|)$ does not contain all subsequences of length $M - |T| - 1$ i.e. $\dp[k + 1] < M - |T| - 1$. This check can be done efficiently, see the following code for detail.

code
 
int main() {
string s;
scan(s);
int n = SZ(s);
vb vis(26);
int cnt = 0;
vi dp(n + 1);
int length = 0;
down (i, n - 1, 0) {
if (!vis[s[i] - 'a']) {
vis[s[i] - 'a'] = true;
++cnt;
if (cnt == 26) {
++length;
fill(all(vis), false);
cnt = 0;
}
}
dp[i] = length;
} vv next(n, vi(26));

fill(all(next.back()), n);

next.back()[s.back() - 'a'] = n - 1;

down (i, n - 2, 0) {

rng(j, 0, 26) {

next[i][j] = s[i] - 'a' == j ? i : next[i + 1][j];

}

} ++length; int pos = 0;

while (length > 0) {

rng (j, 0, 26) {

int t = next[pos][j];

if (t < n && dp[t + 1] == length - 1) continue;

if (t < n) {

pos = t + 1;

}

cout << char('a' + j);

break;

}

--length;

}

cout << '\n';

return 0;

}

ARC081E. Don't Be a Subsequence的更多相关文章

  1. [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  2. [LeetCode] Is Subsequence 是子序列

    Given a string s and a string t, check if s is subsequence of t. You may assume that there is only l ...

  3. [LeetCode] Wiggle Subsequence 摆动子序列

    A sequence of numbers is called a wiggle sequence if the differences between successive numbers stri ...

  4. [LeetCode] Increasing Triplet Subsequence 递增的三元子序列

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  5. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  6. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  7. 【LeetCode】Increasing Triplet Subsequence(334)

    1. Description Given an unsorted array return whether an increasing subsequence of length 3 exists o ...

  8. CF724D. Dense Subsequence[贪心 字典序!]

    D. Dense Subsequence time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  9. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

随机推荐

  1. mysql 查询整个数据库所有表的行数

    >use information_schema; >select sum(table_rows) from tables where TABLE_SCHEMA = "test&q ...

  2. k8s之yaml详解

    k8s之yaml详解 apiVersion: v1 #指定api版本,此值必须在kubectl apiversion中 kind: Pod #指定创建资源的角色/类型 metadata: #资源的元数 ...

  3. Maven依赖传递

    依赖传递原则: 1.路径最短原则 2.路径相同是先申明者优先(dependency申明顺序先的优先)

  4. TCP/IP协议入门

    TCP/IP协议入门 1. 简介 Transmission Control Protocol/Internet Protocol的简写,即传输控制协议/因特网互联协议.它是网络通信的一套协议集合. 先 ...

  5. 重读APUE(14)-主线程终止对子线程的影响

    在main中创建线程,我们称main线程为主线程,新建线程为子线程(其实没有什么主线程和子线程的父子概念,它们是平行的,为了好理解这样称呼),如果子线程内部执行相对比较耗时的操作,主线程执行的快,而且 ...

  6. shell 變數

    echo $? 上个命令的退出状态,或函数的返回值. ref: http://c.biancheng.net/cpp/view/2739.html

  7. as 什么意思?

    You can denote particular console messages and variable values as having different types using four ...

  8. oracle数据库使用PL/sql导入excel数据

    1.打开PL/SQL工具,菜单进入   工具>ODBC导入器(菜单列表倒数第二): 2.连接数据库与选择导入的excel文件表: 3.选择导入的表以及excel与数据库表字段之间的对应关系:

  9. 一百三十四:CMS系统之版块管理二

    编辑 html,将数据渲染到tr上,方便js取值 js //编辑板块$(function () { $('.edit-board-btn').click(function (event) { var ...

  10. Ideal常用 快捷键

    IntelliJ Idea 常用快捷键列表   Alt+回车 导入包,自动修正Ctrl+N   查找类Ctrl+Shift+N 查找文件Ctrl+Alt+L  格式化代码 Ctrl+Alt+O 优化导 ...