【题目描述】

一个长度为n的序列,一开始序列数的权值都是0,有m次操作

支持两种操作,

1 L R x,给区间[L,R]内,第一个数加x,第二个数加22⋅x,第三个数加32⋅x...第R-L+1个数加(R−L+1)^2⋅x

2 L R 查询区间[L,R]内的权值和

每次询问的答案对264取模

【输入格式】

第一行两个数n,m,表示序列长度和操作次数

接下来m行,每行描述一个操作,有如下两种情况:

1 L R x,给区间[L,R]内,第一个数加x,第二个数加22⋅x,第三个数加32⋅x...第R-L+1个数加(R−L+1)^2⋅x

2 L R 查询区间[L,R]内的权值和

【输出格式】

为了减少输出,你只需要输出所有答案对2^64取膜之后的异或和。

【样例输入】

5 5

1 3 4 1

2 1 5

2 2 2

1 3 3 1

1 2 4 1

【样例输出】

5

【提示】

对于10%的数据 n,m<=2000

对于30%的数据 n,m<=10000

对于100%的数据,n,m<=100000,1<=L<=R<=n,0<=x<=109

小技巧:对2^64取膜可以使用unsigned long long 的自然溢出

为了卡上榜使用标记永久化

我们先拆开(i-(L-1))^2⋅x,变成

i^2x - 2i(l+1)x + (L-1)^2*x

再变成

i^2x + 2i(1-l)x + (L-1)^2*x

接着,我们发现,第三项是一个常数项

第二项i的次数是1,第一项i的次数是2

我们就预处理i的前缀和和i*i的前缀和

于是我们开3个lazy数组,第一个保存 x ,第二个保存 2(1-l)x ,第三个保存常数(L-1)^2*x

在查询的时候,把lazy1的数字乘上i*i的前缀和,第二个乘上i的前缀和,第三个直接乘区间长度

由于是标记永久化,我们计算完标记的贡献之后还要加上两个儿子的贡献

解。

#include<bits/stdc++.h>
#define ll unsigned long long
#define inf 0x7fffffff
#define maxn 200009
#define mid ((l+r)>>1)
using namespace std;
int n,m,cnt;
int ls[maxn],rs[maxn];
ll S1[maxn],S2[maxn];
ll ans=0;
ll lz0[maxn],lz1[maxn],lz2[maxn],sum[maxn];
void Build(int &rt,int l,int r)
{
if(rt==0)rt=++cnt;
if(l==r)return;
Build(ls[rt],l,mid),Build(rs[rt],mid+1,r);
}
void Add(int rt,int l,int r,int s,int t,ll x2,ll x1,ll x0)
{
if(s>r||t<l)return;
if(s<=l&&r<=t)
{
lz2[rt]+=x2,lz1[rt]+=x1,lz0[rt]+=x0;
sum[rt]=sum[ls[rt]]+sum[rs[rt]]+lz2[rt]*(S2[r]-S2[l-1])+lz1[rt]*(S1[r]-S1[l-1])+lz0[rt]*(r-l+1);
return;
}
Add(ls[rt],l,mid,s,t,x2,x1,x0);
Add(rs[rt],mid+1,r,s,t,x2,x1,x0);
sum[rt]=sum[ls[rt]]+sum[rs[rt]]+lz2[rt]*(S2[r]-S2[l-1])+lz1[rt]*(S1[r]-S1[l-1])+lz0[rt]*(r-l+1);
}
ll Sum(int rt,int l,int r,int s,int t)
{
if(s>r||t<l)return 0;
if(s<=l&&r<=t)return sum[rt];
int LL=max(l,s),RR=min(r,t);//交叉区间
return Sum(ls[rt],l,mid,s,t)+Sum(rs[rt],mid+1,r,s,t)+lz2[rt]*(S2[RR]-S2[LL-1])+lz1[rt]*(S1[RR]-S1[LL-1])+lz0[rt]*(RR-LL+1);
}
int RT;
signed main()
{
freopen("rneaty.in","r",stdin);
freopen("rneaty.out","w",stdout);
scanf("%d%d",&n,&m);
Build(RT,1,n);
for(int i=1;i<=n;i++)S1[i]=S1[i-1]+i,S2[i]=S2[i-1]+i*1ull*i;
while(m--)
{
int cz,l,r;
scanf("%d%d%d",&cz,&l,&r);
if(cz==1)
{
ll x;
scanf("%llu",&x);
Add(1,1,n,l,r,x,x*2*(1ull-l),(l-1)*x*(l-1));
//i^2*x + i*2(1-L)*x +(L-1)^2*x
}else
{
ans^=Sum(1,1,n,l,r);
}
}
printf("%llu\n",ans);
return 0;
}

COGS 2633. [HZOI 2016] 数列操作e的更多相关文章

  1. cogs 2632. [HZOI 2016] 数列操作d

    2632. [HZOI 2016] 数列操作d ★★★   输入文件:segment.in   输出文件:segment.out   简单对比时间限制:3 s   内存限制:512 MB [题目描述] ...

  2. 2018.08.04 cogs2633. [HZOI 2016]数列操作e(线段树)

    传送门 支持区间加w(i−ql+1)2" role="presentation" style="position: relative;">w(i ...

  3. 2018.07.30 cogs2632. [HZOI 2016] 数列操作d(线段树)

    传送门 线段树基本操作 区间加等差数列,维护区间和. 对于每个区间维护等差数列首项和公差,易证这两个东西都是可合并的,然后使用小学奥数的知识就可以切掉这题. 代码: #include<bits/ ...

  4. COGS 2416.[HZOI 2016]公路修建 & COGS 2419.[HZOI 2016]公路修建2 题解

    大意: [HZOI 2016]公路修建 给定一个有n个点和m-1组边的无向连通图,其中每组边都包含一条一级边和一条二级边(连接的顶点相同),同一组边中的一级边权值一定大于等于二级边,另外给出一个数k( ...

  5. cogs——2478. [HZOI 2016]简单的最近公共祖先

    2478. [HZOI 2016]简单的最近公共祖先 ★☆   输入文件:easy_LCA.in   输出文件:easy_LCA.out   简单对比时间限制:2 s   内存限制:128 MB [题 ...

  6. COGS 2199. [HZOI 2016] 活动投票

    2199. [HZOI 2016] 活动投票 ★★   输入文件:hztp.in   输出文件:hztp.out   简单对比时间限制:0.5 s   内存限制:2 MB [题目描述] 衡中活动很多, ...

  7. COGS 2485. [HZOI 2016]从零开始的序列

    2485. [HZOI 2016]从零开始的序列 ★★   输入文件:sky_seq.in   输出文件:sky_seq.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] ...

  8. COGS 2334. [HZOI 2016]最小函数值

    时间限制:1 s   内存限制:128 MB [题目描述] 有n个函数,分别为F1,F2,...,Fn.定义Fi(x)=Aix2+Bix+Ci(x∈N∗).给定这些Ai.Bi和Ci,请求出所有函数的所 ...

  9. cogs——2419. [HZOI 2016]公路修建2

    2419. [HZOI 2016]公路修建2 ★☆   输入文件:hzoi_road2.in   输出文件:hzoi_road2.out   简单对比时间限制:1 s   内存限制:128 MB [题 ...

随机推荐

  1. P2663 越越的组队

    原题链接  https://www.luogu.org/problem/P2663 很容易看出来是个背包问题嘛: 体积是总分的一半,求最高分,每个同学选或不选,是个 01背包问题. 自信地交上去之后发 ...

  2. CF1214B

    CF1214B 解法: 暴力枚举,时间复杂度 $ O(n) $ CODE: #include<iostream> #include<cstdio> #include<cs ...

  3. Java同步数据结构之LinkedBlockingQueue

    前言 比起ArrayBlockingQueue,LinkedBlockingQueue应该是最被大家常用的阻塞队列,LinkedBlockingQueue是基于链表的一种可选容量的阻塞队列,也就是说, ...

  4. 最新react-native(Expo)安装使用antd-mobile-rn组件库

    1\安装antd-mobile-rn 库 npm install antd-mobile-rn --save 2.按需加载 npm install babel-plugin-import --save ...

  5. Swift 可选(Optionals)类型

    Swift 的可选(Optional)类型,用于处理值缺失的情况.可选表示"那儿有一个值,并且它等于 x "或者"那儿没有值". Swfit语言定义后缀?作为命 ...

  6. Smarty 获取当前日期时间和格式化日期时间

    在Smarty 中获取当前日期时间和格式化日期时间与PHP中有些不同的地方,这里就为您详细介绍: 首先是获取当前的日期时间:在PHP中我们会使用date函数来获取当前的时间,实例代码如下:date(& ...

  7. 解析Python编程中的包结构

    解析Python编程中的包结构 假设你想设计一个模块集(也就是一个"包")来统一处理声音文件和声音数据.通常由它们的扩展有不同的声音格式,例如:WAV,AIFF,AU),所以你可能 ...

  8. TFTP反射放大攻击浅析

    0x00 前言 经由@杀戮提示,让我看看softpedia上的这篇报道,咱就来研究一下文中的使用TFTP(Trivial File Transfer Protocol,简单文件传输协议)进行反射型DD ...

  9. 编译bitcoin比特币客户端

    我遇到了两个不太容易解决的问题. 问题一: checking for Berkeley DB C++ headers... default configure: error: Found Berkel ...

  10. DataFrame执行groupby聚合操作后,如何继续保持DataFrame对象而不变成Series对象

    刚接触pandas不久,在处理特征时,碰到一个恶心的问题:用groupby聚合后,之前的dataframe对象变成了series对象,聚合的字段变成了索引index,导致获取这些字段时很麻烦,后面发现 ...