1 入门

2 多个输入和输出

3 共享层

函数式模型有一个很好用的应用实例是:编写拥有多个输入和输出的模型。函数式模型使得在复杂网络中操作巨大的数据流变的简单。

我们实现下面这样的模型

from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model # Headline input: meant to receive sequences of 100 integers, between 1 and 10000.
# Note that we can name any layer by passing it a "name" argument.
main_input = Input(shape=(100,), dtype='int32', name='main_input') # This embedding layer will encode the input sequence
# into a sequence of dense 512-dimensional vectors.
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input) # A LSTM will transform the vector sequence into a single vector,
# containing information about the entire sequence
lstm_out = LSTM(32)(x)

这里有 两个知识点

1、embedding层的使用。这里有个背景知识:我们输入的是100整数,每个整数都是0-1000的。代表的含义是:我们有个1000词的词典,输入的是100词的标题

然后经过embedding层,进行编码,输出512的向量

2、 LSTM(32)返回值是一个model,它可以向layer一样直接被调用

然后我们插入一个辅助层,它可以使得即使在模型的主损失值很大的时候 ,LSTM和Embedding层也可以得到平滑的训练

auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)

我们加入一个平滑的输入 ,把它和LSTM的输出连接在一起

auxiliary_input = Input(shape=(5,), name='aux_input')
x = keras.layers.concatenate([lstm_out, auxiliary_input]) # We stack a deep densely-connected network on top
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x) # And finally we add the main logistic regression layer
main_output = Dense(1, activation='sigmoid', name='main_output')(x)

这样,我们的模型就有两个输入和两个输出

model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])

我们编译我们的模型,并且给平滑损失一个0.2的权重。可以用列表或者字典定义不同输出对应损失权重,如果对loss传入一个数 ,则损失权重会被用于全部的输出。

model.compile(optimizer='rmsprop', loss='binary_crossentropy',
loss_weights=[1., 0.2])

然后fit数据进行训练

model.fit([headline_data, additional_data], [labels, labels],
epochs=50, batch_size=32)

当然,也可以通过字典来 实现这个目的:

model.compile(optimizer='rmsprop',
loss={'main_output': 'binary_crossentropy', 'aux_output': 'binary_crossentropy'},
loss_weights={'main_output': 1., 'aux_output': 0.2}) # And trained it via:
model.fit({'main_input': headline_data, 'aux_input': additional_data},
{'main_output': labels, 'aux_output': labels},
epochs=50, batch_size=32)

keras Model 2 多输入和输出的更多相关文章

  1. 理解卷积神经网络中的输入与输出形状(Keras实现)

    即使我们从理论上理解了卷积神经网络,在实际进行将数据拟合到网络时,很多人仍然对其网络的输入和输出形状(shape)感到困惑.本文章将帮助你理解卷积神经网络的输入和输出形状. 让我们看看一个例子.CNN ...

  2. Keras Model Sequential模型接口

    Sequential 模型 API 在阅读这片文档前,请先阅读 Keras Sequential 模型指引. Sequential 模型方法 compile compile(optimizer, lo ...

  3. keras Model 3 共享的层

    1 入门 2 多个输入和输出 3 共享层 考虑这样的一个问题:我们要判断连个tweet是否来源于同一个人. 首先我们对两个tweet进行处理,然后将处理的结构拼接在一起,之后跟一个逻辑回归,输出这两条 ...

  4. keras Model 1 入门篇

    1 入门 2 多个输入和输出 3 共享层 最近在学习keras,它有一些实现好的特征提取的模型:resNet.vgg.而且是带权重的.用来做特诊提取比较方便 首先要知道keras有两种定义模型的方式: ...

  5. CString中Format函数与格式输入与输出

    CString中Format函数与格式输入与输出 Format是一个非经常常使用.却又似乎非常烦的方法,下面是它的完整概貌.以供大家查询之用:   格式化字符串forma("%d" ...

  6. MLPClassifier 隐藏层不包括输入和输出

    多层感知机(MLP)原理简介 多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以 ...

  7. Pytorch从0开始实现YOLO V3指南 part5——设计输入和输出的流程

    本节翻译自:https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch ...

  8. 了解一下C++输入和输出的概念

    我们经常用到的输入和输出,都是以终端为对象的,即从键盘输入数据,运行结果输出到显示器屏幕上.从操作系统的角度看,每一个与主机相连的输入输出设备都被看作一个文件.除了以终端为对象进行输入和输出外,还经常 ...

  9. [总结] I/O输入,输出

    I/O输入,输出第一:先判断到底是输入还是输出,站在程序的立场第二:判断是传递字节,还是字符,决定管道粗细,字节流是最基本的数据输出管道.字符类型管道专门用来传送文本数据.Java流的四大父类:1.字 ...

随机推荐

  1. 【DRF框架】restfull规范

    零:核心思想: 1.面对资源编程 2.根据HTTP请求方式的不同对资源进行不同的操作 一.协议 API与用户的通信协议,总是使用HTTPs协议. 二.域名 应该尽量将API部署在专用域名之下. htt ...

  2. mysql(函数,存储过程,事务,索引)

    函数 MySQL中提供了许多内置函数: 内置函数 一.数学函数 ROUND(x,y) 返回参数x的四舍五入的有y位小数的值 RAND() 返回0到1内的随机值,可以通过提供一个参数(种子)使RAND( ...

  3. 解析Linux中LVM与磁盘配额

    LVM 逻辑卷管理 LVM 概述 LVM 是 Linux 操作系统中对磁盘分区进行管理的一种逻辑机制,它是建立在硬盘和分区之上.文件系统之下的一个逻辑层,在建立文件系统时屏蔽了下层的磁盘分区布局,因此 ...

  4. 《Python编程:从入门到实践》第二章 变量和简单数据类型 习题答案

    #2.1 print("Hello world!"); #2.2 message="Hello,Python!"; print(message); #2.3 n ...

  5. vue-cli2 和vue-cli3

    vue-cli2 和vue-cli3 https://www.cnblogs.com/zhanvo/p/10963776.html <!DOCTYPE html> <html lan ...

  6. Luogu P2935 最好的地方Best Spot

    Luogu P2935 最好的地方Best Spot 这道题就是一道近乎裸的Floyd,因为数据很小,所以用领接表存图就可以了. #include<bits/stdc++.h> #defi ...

  7. WPF 反编译后错误处理

    1. 首先,手动创建一个WPF工程(WpfApplicationReflectorDemo) 2. 把生成的WpfApplicationReflectorDemo.exe 拖到ILSpy里 3.点击 ...

  8. 应用程序域 System.AppDomain,动态加载程序集

    一.概述 使用.NET建立的可执行程序 *.exe,并没有直接承载到进程当中,而是承载到应用程序域(AppDomain)当中.在一个进程中可以包含多个应用程序域,一个应用程序域可以装载一个可执行程序( ...

  9. C# TreeView 右键菜单

    方法一: 在winform中,添加一个contextMenuStrip1,设置TreeView的属性ContextMenuStrip为contextMenuStrip1,并为这个contextMenu ...

  10. 【排序算法】冒泡排序(Bubble Sort)

    一.简介 冒泡排序(Bubble Sort)也是一种简单直观的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换, ...