题目

已知 $x_i = ax_i + bx_{i-1}$,求 $x_n \% MOD$.($1\leq n\leq 10^{(10^6)}$)

分析

写成矩阵快速幂的形式,相当于求转移矩阵的 $n$ 次幂。

由于 $n$ 过大,只能用字符串形式保存,如果转成二进制复杂度过高,就直接用十进制好了。

其实十进制快速幂和二进制几乎一样,都是倍增的思想。

ll qpow(ll a, ll b, ll p)
{
ll ret = ;
while(b)
{
if(b&) ret = ret*a%p;
a = a*a%p;
b >>= ;
}
return ret;
} inline ll shi_pow(ll a, ll b, ll p)
{
ll ret = ;
while(b)
{
ll yu = b%;
if(yu) ret = ret*qpow(a,yu,p)%p;
a = qpow(a, , p);
b /= ;
}
return ret;
}

二进制更快,里面能用二进制的换成了二进制。

回到题目,将字符串 $n$ 从高到低就是十进制,与上面类似

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int N=+;
ll x0,x1,a,b,mod;
char s[N]; struct Mat{
int r,c;
ll m[][];
Mat(){
//memset(m,0,sizeof(m));
for(int i = ;i < ;i++)
for(int j = ;j < ;j++)
m[i][j]=;
}
}; inline Mat mmul(Mat x,Mat y,ll p){
Mat ans;
ans.r=x.r;
ans.c=y.c;
for(int i=;i<x.r;i++)
for(int k=;k<x.c;k++)
for(int j=;j<y.c;j++){
ans.m[i][j] = (ans.m[i][j] + x.m[i][k]*y.m[k][j])%p;
}
return ans;
} inline Mat mpow(Mat x,ll y,ll p){
Mat ans;
ans.r=x.r;
ans.c=x.c;
for(int i=;i<ans.c;i++) ans.m[i][i]=;
while(y){
if(y&) ans=mmul(ans,x,p);
x=mmul(x,x,p);
y>>=;
}
return ans;
} inline Mat m_shi_pow(Mat x,char* s,ll p){
Mat ans;
ans.r=x.r;
ans.c=x.c;
int len = strlen(s);
for(int i=;i<ans.c;i++) ans.m[i][i]=;
while(len--){
int yu = (s[len]-''); //printf("yu:%d\n", yu);
if(yu) ans=mmul(ans,mpow(x, yu, p),p);
x=mpow(x,,p);
}
return ans;
} int main(){
scanf("%lld%lld%lld%lld", &x0, &x1, &a, &b);
scanf("%s%lld", s, &mod);
Mat A,T;
A.r=; A.c=;
A.m[][]=x1; A.m[][]=x0;
T.r=; T.c=;
T.m[][]=a; T.m[][]=b; T.m[][]=; T.m[][]=;
T = m_shi_pow(T, s, mod);
A = mmul(T, A, mod);
printf("%lld\n", A.m[][]); return ;
}

这题有点卡常,加些常数优化才抖过去。

2019牛客多校B generator 1——十进制快速幂的更多相关文章

  1. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  2. 2019牛客多校第二场 A Eddy Walker(概率推公式)

    2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...

  3. 2019牛客多校第八场 F题 Flowers 计算几何+线段树

    2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...

  4. 2019牛客多校 Round4

    Solved:3 Rank:331 B xor 题意:5e4个集合 每个集合最多32个数 5e4个询问 询问l到r个集合是不是都有一个子集的xor和等于x 题解:在牛客多校第一场学了线性基 然后这个题 ...

  5. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  6. 2019牛客多校第五场B generator 十进制快速幂

    generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...

  7. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  8. 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数

    目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...

  9. 2019牛客多校第四场 A meeting

    链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...

随机推荐

  1. IntelliJ IDEA 联想代码

  2. python计算平面的法向-利用协方差矩阵求解特征值和特征向量

    Obvious,最小特征值对应的特征向量为平面的法向 这个问题还有个关键是通过python求协方差矩阵的特征值和特征向量,np.linalg.eig()方法直接返回了特征值的向量和特征向量的矩阵 sc ...

  3. 多线程(5) — JDK的并发容器

    JDK提供了一些高效的并发容器,下面介绍几个 ConcurrentHashMap:这是个高效的并发HashMap,可以理解为一个线程安全的HashMap. CopyOnWriteArrayList:这 ...

  4. PAT甲级 树 相关题_C++题解

    树 目录 <算法笔记>重点摘要 1004 Counting Leaves (30) 1053 Path of Equal Weight (30) 1079 Total Sales of S ...

  5. 只学python行吗

    常言道:"流水的语言,铁打的Python",目前它可以说是已经"睥睨天下,傲视群雄"了.它天生丽质,易于读写,非常实用,从而赢得了 广泛的群众基础,被誉为&qu ...

  6. go 包的概念

    ------------------------------------------------------------------ package main import ( "fmt&q ...

  7. Nginx学习笔记(四):基本数据结构

    目录 Nginx的一些特点 Nginx自定义整数类型 异常机制错误处理 内存池 字符串 时间与日期 运行日志   Nginx的一些特点 高性能 采用事件驱动模型,可以无阻塞的处理海量并发连接 高稳定性 ...

  8. MySQL 军规

    MySQL 基础篇 三范式 MySQL 军规 MySQL 配置 MySQL 用户管理和权限设置 MySQL 常用函数介绍 MySQL 字段类型介绍 MySQL 多列排序 MySQL 行转列 列转行 M ...

  9. 面试经典算法:快速排序Golang实现

    Golang快速排序 定义 快速排序由C. A. R. Hoare在1962年提出.快速排序是对冒泡排序的一种改进,采用了一种分治的策略. 基本思想 通过一趟排序将要排序的数据分割成独立的两部分,其中 ...

  10. 八、wepy代码规范

    变量与方法尽量使用驼峰式命名,并且注意避免使用$开头. 以$开头的标识符为WePY框架的内建属性和方法,可在JavaScript脚本中以this.的方式直接使用,具体请参考API文档. 小程序入口.页 ...