题目

已知 $x_i = ax_i + bx_{i-1}$,求 $x_n \% MOD$.($1\leq n\leq 10^{(10^6)}$)

分析

写成矩阵快速幂的形式,相当于求转移矩阵的 $n$ 次幂。

由于 $n$ 过大,只能用字符串形式保存,如果转成二进制复杂度过高,就直接用十进制好了。

其实十进制快速幂和二进制几乎一样,都是倍增的思想。

ll qpow(ll a, ll b, ll p)
{
ll ret = ;
while(b)
{
if(b&) ret = ret*a%p;
a = a*a%p;
b >>= ;
}
return ret;
} inline ll shi_pow(ll a, ll b, ll p)
{
ll ret = ;
while(b)
{
ll yu = b%;
if(yu) ret = ret*qpow(a,yu,p)%p;
a = qpow(a, , p);
b /= ;
}
return ret;
}

二进制更快,里面能用二进制的换成了二进制。

回到题目,将字符串 $n$ 从高到低就是十进制,与上面类似

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int N=+;
ll x0,x1,a,b,mod;
char s[N]; struct Mat{
int r,c;
ll m[][];
Mat(){
//memset(m,0,sizeof(m));
for(int i = ;i < ;i++)
for(int j = ;j < ;j++)
m[i][j]=;
}
}; inline Mat mmul(Mat x,Mat y,ll p){
Mat ans;
ans.r=x.r;
ans.c=y.c;
for(int i=;i<x.r;i++)
for(int k=;k<x.c;k++)
for(int j=;j<y.c;j++){
ans.m[i][j] = (ans.m[i][j] + x.m[i][k]*y.m[k][j])%p;
}
return ans;
} inline Mat mpow(Mat x,ll y,ll p){
Mat ans;
ans.r=x.r;
ans.c=x.c;
for(int i=;i<ans.c;i++) ans.m[i][i]=;
while(y){
if(y&) ans=mmul(ans,x,p);
x=mmul(x,x,p);
y>>=;
}
return ans;
} inline Mat m_shi_pow(Mat x,char* s,ll p){
Mat ans;
ans.r=x.r;
ans.c=x.c;
int len = strlen(s);
for(int i=;i<ans.c;i++) ans.m[i][i]=;
while(len--){
int yu = (s[len]-''); //printf("yu:%d\n", yu);
if(yu) ans=mmul(ans,mpow(x, yu, p),p);
x=mpow(x,,p);
}
return ans;
} int main(){
scanf("%lld%lld%lld%lld", &x0, &x1, &a, &b);
scanf("%s%lld", s, &mod);
Mat A,T;
A.r=; A.c=;
A.m[][]=x1; A.m[][]=x0;
T.r=; T.c=;
T.m[][]=a; T.m[][]=b; T.m[][]=; T.m[][]=;
T = m_shi_pow(T, s, mod);
A = mmul(T, A, mod);
printf("%lld\n", A.m[][]); return ;
}

这题有点卡常,加些常数优化才抖过去。

2019牛客多校B generator 1——十进制快速幂的更多相关文章

  1. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  2. 2019牛客多校第二场 A Eddy Walker(概率推公式)

    2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...

  3. 2019牛客多校第八场 F题 Flowers 计算几何+线段树

    2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...

  4. 2019牛客多校 Round4

    Solved:3 Rank:331 B xor 题意:5e4个集合 每个集合最多32个数 5e4个询问 询问l到r个集合是不是都有一个子集的xor和等于x 题解:在牛客多校第一场学了线性基 然后这个题 ...

  5. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  6. 2019牛客多校第五场B generator 十进制快速幂

    generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...

  7. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  8. 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数

    目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...

  9. 2019牛客多校第四场 A meeting

    链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...

随机推荐

  1. 多年经验【Parallels Desktop14.0.1 永久激活 】版 推荐苹果mac 虚拟机pmg序列号

    parallels desktop 14 mac 激活码          parallels 13免费密钥 parallels desktop 14 激活码 很多用 MAC 的朋友发现平时离不开 W ...

  2. 列表初始化(list initialization)

    列表初始化啊就是大括号来初始化: 列表初始化的好处:

  3. prometheus+grafana+Alertmanager邮箱告警

    环境 系统:CentOS 7 软件:alertmanager-0.18.0.linux-amd64.tar.gz 安装 下载二进制包 地址:https://prometheus.io/download ...

  4. 解决IIS出现“由于权限不足而无法读取配置文件”的问题

    在部署IIS项目的时候,今天突然遇到了如下问题: HTTP 错误 500.19 - Internal Server Error 无法访问请求的页面,因为该页的相关配置数据无效 详细错误信息: 由于权限 ...

  5. JS OOP -01 面向对象的基础

    JS面向对象的基础: 1.用定义函数的方式定义类 2.用new操作符获得一个类的实例 3.使用 [ ] 引用对象的属性和方法 4.动态添加,修改,删除对象的属性和方法 5.使用 { } 语法创建无类型 ...

  6. SQL 不同服务器数据库操作

    https://www.cnblogs.com/lusunqing/p/3660190.html --创建远程链接服务器 execute sys.sp_addlinkedserver @server= ...

  7. java 框架-分布式服务框架2Dubbo

    https://blog.csdn.net/houshaolin/article/details/76408399 1. Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的 ...

  8. angular select 的第一行option 空白问题

    记录一下这个问题的解决方案 <select class="form-control" ng-init="vm.columnId = vm.columnList[0] ...

  9. javaweb常识

    Tomcat下载地址www.apache.org 在电脑中查看java版本:cmd中输入java -version tomcat解压后目录 bin:放可执行文件(如startup.bat   shut ...

  10. POJ1484(Blowing Fuses)--简单模拟

    题目链接:http://poj.org/problem?id=1484 这题直接简单模拟即可.给你n个容器,m个操作,最大容量C.模拟每一个对器件的开关操作.如果原来是关闭的,则打开,同时最大功耗加上 ...