牛客 545A 小A与最大子段和 & CF 660F Bear and Bowling 4
大意: 给定序列$a$, 求选择一个子区间$[l,r]$, 使得$\sum\limits_{i=l}^r(i-l+1)a_i$最大.
$n\le2e5, |a_i|\le 1e7$.
记$s[i]=\sum a[i], m[i]=\sum ia[i]$, $dp[i]$为以$i$为右端点的答案, 有
$\begin{align} \notag dp[i] & =\max\limits_{0\le j<i}\{m[i]-m[j]-j(s[i]-s[j])\} \\ & = m[i]-\min\limits_{0\le j<i}\{m[j]-js[j]+js[i]\} \notag\end{align}$
然后斜率优化.
#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 1e6+10;
int n, a[N], q[N];
ll s[N], m[N], dp[N], g[N];
double slope(int i, int j) {
return ((double)g[i]-g[j])/(i-j);
} int main() {
scanf("%d", &n);
REP(i,1,n) {
scanf("%d", a+i);
s[i] = s[i-1]+a[i];
m[i] = m[i-1]+(ll)i*a[i];
g[i] = (ll)i*s[i]-m[i];
}
q[++*q] = 0;
ll ans = -1e18;
REP(i,1,n) {
int opt=1,l=2,r=*q;
while (l<=r) {
if (slope(q[mid],q[mid-1])>=s[i]) opt=mid,l=mid+1;
else r=mid-1;
}
ans = max(ans, m[i]-m[q[opt]]-(ll)q[opt]*(s[i]-s[q[opt]]));
while (*q>1&&slope(i,q[*q])>slope(q[*q],q[*q-1])) --*q;
q[++*q] = i;
}
printf("%lld\n", ans);
}
牛客 545A 小A与最大子段和 & CF 660F Bear and Bowling 4的更多相关文章
- 牛客练习赛 小A与最大子段和 解题报告
小A与最大子段和 题意 在一个序列 \(\{a\}\) 里找到一个非空子段 \(\{b\}\), 满足 \(\sum\limits_{i=1}^{|b|}b_i\times i\) 最大 \(n\le ...
- 牛客练习赛 小D的剑阵 解题报告
小D的剑阵 题意链接: https://ac.nowcoder.com/acm/contest/369/F 来源:牛客网 现在你有 \(n\) 把灵剑,其中选择第i把灵剑会得到的 \(w_i\) 攻击 ...
- 牛客练习赛 小A与任务 解题报告
小A与任务 链接: https://ac.nowcoder.com/acm/contest/369/B 来源:牛客网 题目描述 小A手头有 \(n\) 份任务,他可以以任意顺序完成这些任务,只有完成当 ...
- 牛客练习赛 小D的Lemon 解题报告
小D的Lemon 题意 已知 \[ g(x)=\left\{\begin{matrix} 1&,x=1\\ \sum_{i=1}^qk_i&,otherwise \end{matrix ...
- 【牛客】小w的魔术扑克 (并查集?? 树状数组)
题目描述 小w喜欢打牌,某天小w与dogenya在一起玩扑克牌,这种扑克牌的面值都在1到n,原本扑克牌只有一面,而小w手中的扑克牌是双面的魔术扑克(正反两面均有数字,可以随时进行切换),小w这个人就准 ...
- 牛客网小a的旅行计划
地址:https://ac.nowcoder.com/acm/contest/223/B 此题是一道套公式题目,不难,ans=(pow(4,n+1)-4*pow(3,n+1)+6*pow(2,n+1) ...
- 牛客 72C 小H和游戏 (动态点分治)
大意: 给定树, 每个点初始权值0, 每次询问给出$x$, $x$权值+1, 求距离$x$不超过2的权值和. 这题数据范围过大, 动态点分治卡不过去, 考虑其他做法 考虑每次只加范围$1$, c[0] ...
- 牛客OI周赛7-提高组 A 小睿睿的等式
链接:https://ac.nowcoder.com/acm/contest/371/A来源:牛客网 小睿睿在游戏开始时有n根火柴棒,他想知道能摆成形如“A+B=n”的等式且使用的火柴棒数也恰好等于n ...
- 牛客OI周赛7-提高组 B小睿睿的询问(ST打表)
链接:https://ac.nowcoder.com/acm/contest/371/B来源:牛客网 小睿睿的n个妹纸排成一排,每个妹纸有一个颜值val[i].有m个询问,对于每一个询问,小睿睿想知道 ...
随机推荐
- docker下MySQL镜像的使用方法
预习: 使用到的docker命令: docker images 显示本地有的镜像 docker pull +镜像名称 从docker hub上面拉取镜像 docker run --nam ...
- js获取当前页面url信息
<html> <head> <meta charset="utf-8" /> <title></title> <s ...
- python递归获取目录下指定文件
获取一个目录下所有指定格式的文件是实际生产中常见需求. import os #递归获取一个目录下所有的指定格式的文件 def get_jsonfile(path,file_list): dir_lis ...
- excel中如何设置只打印第一页
在打印表格时,怎样设置只打印第一页呢,操作很简单,下面,小编说下操作方法. 方法/步骤 打开要打印的工作表, 再点击“文件” 弹出的页面中,在左侧这里,点击“打印” 在右边弹出与打 ...
- 6.HBase时髦谨慎财会会计
1.基本概念和原理 2.核心知识点 3.安装部署 4.Hbase开发
- mysql数据库基本操作sql语言
mysql的启动与关闭 启动 /etc/init.d/mysql start 多实例使用自建脚本启动 2种关闭数据库方法 mysqladmin -uroot -p密码 shutdown #优雅关闭/e ...
- Numpy中matrix()和array()的区别
matrix() 和 array() 的区别,主要从以下方面说起: 1. 矩阵生成方式不同 import numpy as np a1 = np.array([[1, 2], [3, 4]]) b1 ...
- LoadRunner参数化详解
LoadRunner参数化详解 距离上次使用loadrunner 已经有一年多的时间了.初做测试时在项目中用过,后面项目中用不到,自己把重点放在了工具之外的东西上,认为性能测试不仅仅是会用工具,最近又 ...
- zabbix(2)使用指南
一.邮件报警(一个客户端安装server,agent) 管理->报警媒介类型->email 管理->用户->Admin->报警媒介 配置->动作->Repor ...
- com.jniwrapper.util.ProcessorInfo
MyEclipse 9.x Crack报错 com.jniwrapper.util.ProcessorInfo usercode or systemid is empty! 卸载JDK9,改成JDK8