scalaz-stream-fs2是一种函数式的数据流编程工具。fs2的类型款式是:Stream[F[_],O],F[_]代表一种运算模式,O代表Stream数据元素的类型。实际上F就是一种延迟运算机制:F中间包含的类型如F[A]的A是一个可能会产生副作用不纯代码(impure code)的运算结果类型,我们必须用F对A运算的延迟机制才能实现编程过程中的函数组合(compositionality),这是函数式编程的标准做法。如果为一个Stream装备了F[A],就代表这个Stream会在处理数据元素O的过程中对O施用运算A,如果这个运算A会与外界交互(interact with outside world)如:文件、数据库、网络等的读写操作,那么这个Stream有数据元素I/O功能的需求。我们可以通过fs2 Stream的状态机器特性(state machine)及F[A]与外界交互功能来编写完整的数据处理(data processing)程序。如果能够在数据库程序编程中善用fs2的多线程运算模式来实现对数据库存取的并行运算,将会大大提高数据处理的效率。我们将在本篇着重讨论fs2在实现I/O程序中的有关方式方法。

首先,我们需要以整体Stream为程序运算框架,把与外界交互的运算A串联起来,然后通过Stream的节点来代表程序状态。我们首先需要某种方式把F[A]与Stream[F,A]关联起来,也就是我们所说的把一个F[A]升格成Stream[F,A]。fs2提供了Stream.eval函数,我们看看它的类型款式:

def eval[F[_], A](fa: F[A]): Stream[F, A] = attemptEval(fa) flatMap { _ fold(fail, emit) }

很明显,提供一个F[A],eval返回Stream[F,A]。这个返回结果Stream[F,A]的元素A是通过运算F[A]获取的:在一个数据库程序应用场景里这个A可能是个数据库连接(connection),那么F[A]就是一个连接数据库的操作函数,返回的A是个连接connection。这次我们来模拟一个对数据库表进行新纪录存储的场景。一般来说我们会按以下几个固定步骤进行:

1、连接数据库,获取connection连接

2、产生新数据(在其它场景里可能是读取数据然后更新)。这可能是一个循环的操作

3、将数据写入数据库

这三个步骤可以用Stream的三种状态来表示:一个源头(source)、传转(pipe transducer)、终点(sink)。

我们先示范如何构建源头:这是一种占用资源的操作,会产生副作用,所以我们必须用延迟运算方式来编程:

 //用Map模拟数据库表
import scala.collection.mutable.Map
type DataStore = Map[Long, String]
val dataStore: DataStore = Map() //> dataStore : fs2Eval.DataStore = Map()
case class Connection(id: String, store: DataStore)
def src(producer: String): Stream[Task,Connection] =
Stream.eval(Task.delay { Connection(producer,dataStore)})
 //> src: (producer: String)fs2.Stream[fs2.Task,fs2Eval.Connection]

这个示范用了一个mutable map类型来模拟会产生副作用的数据库表。我们把具体产生数据的源头用Connection.id传下去便于在并行运算示范里进行跟踪。在这个环节里我们模拟了连接数据库dataStore操作。

产生数据是在内存里进行的,不会使用到connection,但我们依然需要把这个connection传递到下个环节:

 case class Row(conn: Connection, key: Long, value: String)
val recId = new java.util.concurrent.atomic.AtomicLong()
//> recId : java.util.concurrent.atomic.AtomicLong = 1
def createData(conn: Connection): Row =
Row(conn, recId.incrementAndGet, s"Producer $conn.id: at ${System.currentTimeMillis}")
//> createData: (conn: fs2Eval.Connection)fs2Eval.Row
val trans: Pipe[Task,Connection,Row] = _.map {conn => createData(conn)}
 //> trans : fs2.Pipe[fs2.Task,fs2Eval.Connection,fs2Eval.Row] = <function1>

trans是个Pipe。我们可以用through把它连接到src。

向数据库读写都会产生副作用。下一个环节我们模拟把trans传递过来的Row写入数据库。这里我们需要用延迟运算机制:

 def log: Pipe[Task, Row, Row] = _.evalMap { r =>
Task.delay {println(s"saving row pid:${r.conn.id}, rid:${r.key}"); r}}
def saveRow(row: Row) = row.conn.store += (row.key -> row.value) val snk: Sink[Task,Row] = _.evalMap { r =>
Task.delay { saveRow(r); () } }

增加了个跟踪函数log。从上面的代码可以看出:实际上Sink就是Pipe,只不过返回了()。

我们试试把这几个步骤连接起来运算一下:

 val sprg = src("").through(trans).repeat.take().through(log).to(snk)
//> sprg : fs2.Stream[fs2.Task,Unit] = evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>).flatMap(<function1>).flatMap(<function1>).flatMap(<function1>)
sprg.run.unsafeRun //> saving row pid:001, rid:2
//| saving row pid:001, rid:3
//| saving row pid:001, rid:4
println(dataStore) //> Map(2 -> Connection(001,Map()).id: at 1472605736214, 4 -> Connection(001,Map(2 -> Connection(001,Map()).id: at 1472605736214, 3 -> Connection(001,Map(2 -> Connection(001,Map()).id: at 1472605736214)).id: at 1472605736245)).id : at 1472605736248, 3 -> Connection(001,Map(2 -> Connection(001,Map()).id: at 1472605736214)).id: at 1472605736245)

我们看到mutable map dataStore内容有变化了。

如果我们把以上的例子用并行运算方式来实现的话,应该如何调整?为方便观察结果,我们先在几个环节增加一些时间延迟:

 implicit val strategy = Strategy.fromFixedDaemonPool()
implicit val scheduler = Scheduler.fromFixedDaemonPool()
def src(producer: String): Stream[Task,Connection] =
Stream.eval(Task.delay { Connection(producer,dataStore)}
.schedule(.seconds)) val trans: Pipe[Task,Connection,Row] = _.evalMap {conn =>
Task.delay{createData(conn)}.schedule(.second)}

下面我们把一些类型调整成Stream[Task,Stream[Row]],然后把concurrent.join函数掺进去:

 val srcs = concurrent.join()(Stream(src(""),src(""),src(""),src("")))
//> srcs : fs2.Stream[fs2.Task,fs2Eval.Connection] = attemptEval(Task).flatMap
<function1>).flatMap(<function1>)
val recs: Pipe[Task,Connection,Row] = src => {
concurrent.join()(src.map { conn =>
Stream.repeatEval(Task {createData(conn)}.schedule(.second)) })
}  //> recs : fs2.Pipe[fs2.Task,fs2Eval.Connection,fs2Eval.Row] = <function1> def saveRows(row: Row) = { row.conn.store += (row.key -> row.value); row}
 //> saveRows: (row: fs2Eval.Row)fs2Eval.Row
val snks: Pipe[Task,Row,Row] = rs => {
concurrent.join()(rs.map { r =>
Stream.eval(Task {saveRows(r)}.schedule(.second)) })
} //> snks : fs2.Pipe[fs2.Task,fs2Eval.Row,fs2Eval.Row] = <function1>

我们试着把它们连接起来进行运算:

 val par = srcs.through(recs).take().through(log("before")).through(chnn).through(log("after"))
 //> par : fs2.Stream[fs2.Task,fs2Eval.Row] = attemptEval(Task).flatMap(<function1>).flatMap(<function1>).flatMap(<function1>)
par.run.unsafeRun //> before saving pid:001, rid:3
//| before saving pid:003, rid:2
//| before saving pid:002, rid:4
//| before saving pid:001, rid:5
//| after saving pid:001, rid:3
//| after saving pid:003, rid:2
//| before saving pid:003, rid:6
//| after saving pid:002, rid:4
//| before saving pid:002, rid:7
//| after saving pid:001, rid:5
//| before saving pid:001, rid:8
//| before saving pid:003, rid:9
//| after saving pid:003, rid:6
//| after saving pid:002, rid:7
//| before saving pid:002, rid:10
//| before saving pid:004, rid:11
//| after saving pid:001, rid:8
//| after saving pid:003, rid:9
//| after saving pid:002, rid:10
//| after saving pid:004, rid:11

从跟踪函数显示可以看出before,after是交叉发生的,这就代表已经实现了并行运算。

下面是本篇示范源代码:

 import fs2._
import scala.concurrent.duration._
object fs2Eval { //用Map模拟数据库表
import scala.collection.mutable.Map
type DataStore = Map[Long, String]
val dataStore: DataStore = Map()
case class Connection(id: String, store: DataStore)
implicit val strategy = Strategy.fromFixedDaemonPool()
implicit val scheduler = Scheduler.fromFixedDaemonPool()
def src(producer: String): Stream[Task,Connection] =
Stream.eval(Task.delay { Connection(producer,dataStore)}
.schedule(.seconds))
case class Row(conn: Connection, key: Long, value: String)
val recId = new java.util.concurrent.atomic.AtomicLong()
def createData(conn: Connection): Row =
Row(conn, recId.incrementAndGet, s"$conn.id: at ${System.currentTimeMillis}")
val trans: Pipe[Task,Connection,Row] = _.evalMap {conn =>
Task.delay{createData(conn)}.schedule(.second)} def log(pfx: String): Pipe[Task, Row, Row] = _.evalMap { r =>
Task.delay {println(s"$pfx saving pid:${r.conn.id}, rid:${r.key}"); r}}
def saveRow(row: Row) = row.conn.store += (row.key -> row.value) val snk: Sink[Task,Row] = _.evalMap { r =>
Task.delay { saveRow(r); () } } val sprg = src("").through(trans).repeat.take().through(log("")).to(snk)
//sprg.run.unsafeRun
//println(dataStore) val srcs = concurrent.join()(Stream(src(""),src(""),src(""),src("")))
val recs: Pipe[Task,Connection,Row] = src => {
concurrent.join()(src.map { conn =>
Stream.repeatEval(Task {createData(conn)}.schedule(.second)) })
} def saveRows(row: Row) = { row.conn.store += (row.key -> row.value); row}
val chnn: Pipe[Task,Row,Row] = rs => {
concurrent.join()(rs.map { r =>
Stream.eval(Task {saveRows(r)}.schedule(.second)) })
} val par = srcs.through(recs).repeat.take().through(log("before")).through(chnn).through(log("after"))
par.run.unsafeRun

Scalaz(59)- scalaz-stream: fs2-程序并行运算,fs2 running effects in parallel的更多相关文章

  1. Scalaz(52)- scalaz-stream: 并行运算-parallel processing concurrently by merging

    如果scalaz-stream真的是一个实用的数据流编程工具库的话,那它应该能处理同时从多个数据源获取数据以及把数据同时送到多个终点(Sink),最重要的是它应该可以实现高度灵活的多线程运算.但是:我 ...

  2. 改善C#程序的建议10:用Parallel简化Task

    在命名空间System.Threading.Tasks下,有一个静态类Parallel简化了在同步状态下的Task的操作.Parallel主要提供了3个有用的方法:For.ForEach.Invoke ...

  3. Cocos2d-x 3.2编译生成Android程序出错Error running command, return code: 2的解决方法

    用Cocos2d-x 3.2正式版创建项目,结果使用cocos compile -p android编译生成APK程序,结果悲剧了,出现以下错误. Android NDK: Invalid APP_S ...

  4. [No0000189]改善C#程序的建议10:用Parallel简化Task

    在命名空间System.Threading.Tasks下,有一个静态类Parallel简化了在同步状态下的Task的操作.Parallel主要提供了3个有用的方法:For.ForEach.Invoke ...

  5. Scalaz(55)- scalaz-stream: fs2-基础介绍,fs2 stream transformation

    fs2是scalaz-stream的最新版本,沿用了scalaz-stream被动式(pull model)数据流原理但采用了全新的实现方法.fs2比较scalaz-stream而言具备了:更精简的基 ...

  6. Scalaz(58)- scalaz-stream: fs2-并行运算示范,fs2 parallel processing

    从表面上来看,Stream代表一连串无穷数据元素.一连串的意思是元素有固定的排列顺序,所以对元素的运算也必须按照顺序来:完成了前面的运算再跟着进行下一个元素的运算.这样来看,Stream应该不是很好的 ...

  7. Scalaz(57)- scalaz-stream: fs2-多线程编程,fs2 concurrency

    fs2的多线程编程模式不但提供了无阻碍I/O(java nio)能力,更为并行运算提供了良好的编程工具.在进入并行运算讨论前我们先示范一下fs2 pipe2对象里的一些Stream合并功能.我们先设计 ...

  8. Scalaz(45)- concurrency :Task-函数式多线程编程核心配件

    我们在上一节讨论了scalaz Future,我们说它是一个不完善的类型,最起码没有完整的异常处理机制,只能用在构建类库之类的内部环境.如果scalaz在Future类定义中增加异常处理工具的话,用户 ...

  9. Scalaz(23)- 泛函数据结构: Zipper-游标定位

    外面沙尘滚滚一直向北去了,意识到年关到了,码农们都回乡过年去了,而我却留在这里玩弄“拉链”.不要想歪了,我说的不是裤裆拉链而是scalaz Zipper,一种泛函数据结构游标(cursor).在函数式 ...

随机推荐

  1. Html5 实现灯笼绘制

    最近在学习Html5,就用JavaScript在Canvas试着绘制了一个灯笼,并作了简要的说明. 具体绘制思路在页面上有说明,不再赘述,代码如下: <script type="tex ...

  2. Win8换成Win7系统问题小结(修改主板BIOS方法)

    问题描述: 笔记本电脑W8系统使用不习惯,想要换成W7系统,但不管是用光盘安装亦或是用U盘安装,在设置系统启动项的时候,选择从光盘启动或从U盘启动,但是回车点了之后没反应. 下面就说说问题的原因及解决 ...

  3. Atitit.数据索引 的种类以及原理实现机制 索引常用的存储结构

    Atitit.数据索引 的种类以及原理实现机制 索引常用的存储结构 1. 索引的分类1 1.1. 按照存储结构划分btree,hash,bitmap,fulltext1 1.2. 索引的类型  按查找 ...

  4. angularjs指令参数transclude

    angularjs指令参数transclude transclude翻译为嵌入,和之前看到的vue中的slots作用差不多,目的是将指令元素的子内容嵌入到指令的模板中 定义指令 <div sid ...

  5. Java易混淆的概率:成员变量、类变量、实例变量、局部变量

    先看代码 public class Variable{ int b=0; //实例变量 static int a=0; //类变量 final String c="wws"; // ...

  6. 【WP开发】读写剪贴板

    在WP 8.1中只有Silverlight App支持操作剪贴板的API,Runtime App并不支持.不过,在WP 10中也引入了可以操作剪贴板的API. 顺便说点题外话,有人会说,我8.1的开发 ...

  7. 实战MEF(1):一种不错的扩展方式

    在过去,我们完成一套应用程序后,如果后面对其功能进行了扩展或修整,往往需要重新编译代码生成新的应用程序,然后再覆盖原来的程序.这样的扩展方式对于较小的或者不经常扩展和更新的应用程序来说是可以接受的,而 ...

  8. sizzle分析记录:getAttribute和getAttributeNode

    部分IE游览器下无法通过getAttribute取值? <form name="aaron"> <input type="text" name ...

  9. iTween 动画类型

    iTween 动画类型 http://robertpenner.com/easing/easing_demo.html 使用范例 http://www.xuanyusong.com/archives/ ...

  10. ASP.NET MVC5 网站开发实践(二) Member区域 - 用户部分(1)用户注册

    上一次把基本框架搭建起来了,这次开始整Web部分,终于可以看到界面了小激动一下.web项目部分从用户功能开始,基本有注册,登录.注销.查找.查看.删除等涉及Member区域和Manage区域. 目录: ...