A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记
原文链接:https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
借这篇文章进行卷积神经网络的初步理解(Convolutional Nerual Networks)
Image Classification
Image classification(图像分类) is the task of taking an input image and outputting a class(a dog, a cat, ect.) or a probablity of classes that best describes the image.
Inputs and Outputs
When a computer sees an image, it will see an array of pixel values, e.g. 32*32*3, RGB(red,green,blue) values.
/****补充****/
单通道图:俗称灰度图,每个像素点只能有一个值表示颜色,像素值在0-255之间(0是黑色,255是白色,中间值是一些不同等级的灰色)。
三通道图(RGB):每个像素点有三个值表示,对红、绿、蓝三个颜色的通道值变化以及它们之间的相互叠加来得到各种各样的颜色。三通道灰度图指的是三个通道的值相同。
Biological Connection
某些神经元只对特定方向的边缘做出响应,一些神经元只对垂直方向做出响应,一些只对水平方向等。这些神经元都在一个柱状组织里(人眼中的光感受器:柱状体,对事物有一个总体感知),是卷积神经网络的基础。
First Layer - Math Part(Convolutional Layer aka conv layer)
The filter(or a neuron神经元/kernel核) has an array of numbers,called weights or parameters. The filter is convolving, next step(stride) is moving to the right by 1 unit.
The depth of this filter has to be the same as the depth of the input, so the filter is 5*5*3. If we use two filters(5*5*3), the output would be 28*28*2.
First Layer - High Level Perspective
Each of these filters can be thought of as feature identifiers(straight edges, colors, curves ect.).
E.g. a curve detector
The filter will have a pixel structure in which there will be higher numerical values along the area that is a shape of a curve.
So we take this image as example.
(可见第一幅图匹配度高,第二幅匹配度低)
Going Deeper Through the Network
A classic CNN architecture would look like this:
Input -> Conv -> ReLU -> Conv -> ReLU -> Pool -> ReLU -> Conv -> ReLU -> Pool -> Fully Connected Layer
(ReLU:激活函数,Pool:池化层)
There're other layers that are interspersed(点缀,散布) between these conv layers, they provide nonlinearities (ReLU) and preservation(维度保护) of dimension(Pool) that help to improve the robustness(鲁棒性) of the network and control overfitting.
As you go through more and more conv layers,(i).you get activation maps that represent more and more complex features;(ii).the filters begin to have a larger and larger receptive field.
Fully Connected Layer(FC)
全连接层在整个网络中起到分类器的作用,可用卷积实现。
目前全连接由于参数冗余(仅全连接层参数就可占整个网络参数80%左右),近期有使用全局平均池化(global average pooling,GAP),通常有较好的预测性能。
A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记的更多相关文章
- A Beginner's Guide To Understanding Convolutional Neural Networks(转)
A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- [转] Understanding Convolutional Neural Networks for NLP
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...
- Understanding Convolutional Neural Networks for NLP
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- An Intuitive Explanation of Convolutional Neural Networks
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...
- 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...
- 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...
随机推荐
- MySql学习笔记【二、库相关操作】
命令规范 关键字.函数名称大写 数据库.表名.字段名小写 语句须以分号结尾 切换使用数据库 USE database_name 如:USE test 查看数据库列表 SHOW {DATABASES|S ...
- laravel5.8 IoC 容器
网上 对容器的解释有很多,这里只是记录,搬运! 1.简单理解: 2019-10-10 11:24:09 解析 lavarel 容器 IoC 容器 作用 就是 “解耦” .“依赖注入(DI) IoC 容 ...
- BLE 5协议栈-直接测试模式
文章转载自:http://www.sunyouqun.com/2017/04/page/3/ BLE协议充分考虑了设备的测试问题,在协议栈层面提供了直接测试模式,用于执行BLE设备的RF物理层一致性的 ...
- Beta冲刺版本第一天
该作业所属课程:https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2 作业要求地址:https://edu.cnblogs.com ...
- redis-数据淘汰策略
博客标题:Redis的数据淘汰策略及相关注意事项 配置redis.conf中的maxmemory这个值来开启内存淘汰功能 volatile-lru:从已设置过期时间的数据集(server.db[i]. ...
- 【未知来源】Randomized Binary Search Tree
题意 求 \(n\) 个点的 Treap 深度为 \(h=0,1,2,\cdots,n\) 的概率. Treap 是一个随机二叉树,每个节点有权值和优先级,权值和优先级都是 \([0,1]\) 中的随 ...
- es6 模块编译 *** is not function
今天学习vuejs,里面用到了es6的写法,遇到了一个很怪的问题,不知道有人遇到么. 安装的模块引用:import Vue from 'vue';(注意,Vue处没有{},如果加上这个就报错Uncau ...
- logback和log4j比较,前者是后者改良,logback配置详解(转)
一.logback的介绍 Logback是由log4j创始人设计的另一个开源日志组件,官方网站: http://logback.qos.ch.它当前分为下面下个模块: logback-core:其它两 ...
- 处理springboot OTS parsing error: Failed to convert WOFF 2.0 font to SFNT
springboot项目中添加了字体等文件后,页面无法识别,浏览器调试窗口报错如下: Failed to decode downloaded font: http://localhost:8080/f ...
- 在jquery中,使用ajax上传文件和文本
function onSubmit (data) { //获取文本 var callingContent = $('#callingContent').val() // 获取文件 var files ...