思路:

概率结论题,好像属于线性递推,现在也不太懂(lll¬ω¬)

 #define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#include <cstdio>//sprintf islower isupper
#include <cstdlib>//malloc exit strcat itoa system("cls")
#include <iostream>//pair
#include <fstream>
#include <bitset>
//#include <map>
//#include<unordered_map>
#include <vector>
#include <stack>
#include <set>
#include <string.h>//strstr substr
#include <string>
#include <time.h>//srand(((unsigned)time(NULL))); Seed n=rand()%10 - 0~9;
#include <cmath>
#include <deque>
#include <queue>//priority_queue<int, vector<int>, greater<int> > q;//less
#include <vector>//emplace_back
//#include <math.h>
//#include <windows.h>//reverse(a,a+len);// ~ ! ~ ! floor
#include <algorithm>//sort + unique : sz=unique(b+1,b+n+1)-(b+1);+nth_element(first, nth, last, compare)
using namespace std;//next_permutation(a+1,a+1+n);//prev_permutation
#define mem(a,b) memset(a,b,sizeof(a))
#define fo(a,b,c) for(a=b;a<=c;++a)//register int i
#define fr(a,b,c) for(a=b;a>=c;--a)
#define pr printf
#define sc scanf
void swapp(int &a,int &b);
double fabss(double a);
int maxx(int a,int b);
int minn(int a,int b);
int Del_bit_1(int n);
int lowbit(int n);
int abss(int a);
//const long long INF=(1LL<<60);
const double E=2.718281828;
const double PI=acos(-1.0);
const int inf=(<<);
const double ESP=1e-;
const int mod=(int)1e9+;
const int N=(int)1e6+; long long qpow(long long a,long long b,long long mod)
{
long long ans;
a%=mod;
ans=;
while(b!=)
{
if(b&)
ans=(ans*a)%mod;
b/=;
a=(a*a)%mod;
}
return ans;
} int main()
{
int T;
sc("%d",&T);
long long ans=,res;
while(T--)
{
long long n,m;
sc("%lld%lld",&n,&m);
if(n==)
{
res=;
}
else
{
if(m==)
{
res=;
}
else
res=qpow(n-,mod-,mod);
}
ans=ans*res;
ans%=mod;
pr("%lld\n",ans);
}
return ;
} /**************************************************************************************/ int maxx(int a,int b)
{
return a>b?a:b;
} void swapp(int &a,int &b)
{
a^=b^=a^=b;
} int lowbit(int n)
{
return n&(-n);
} int Del_bit_1(int n)
{
return n&(n-);
} int abss(int a)
{
return a>?a:-a;
} double fabss(double a)
{
return a>?a:-a;
} int minn(int a,int b)
{
return a<b?a:b;
}

走环概率问题(至今有点迷)--牛客第二场( Eddy Walker)的更多相关文章

  1. 牛客第二场A-run

    链接:https://www.nowcoder.com/acm/contest/140/A 来源:牛客网 White Cloud is exercising in the playground. Wh ...

  2. 牛客第二场Dmoney

    链接:https://www.nowcoder.com/acm/contest/140/D 来源:牛客网 题目描述 White Cloud has built n stores numbered to ...

  3. 牛客第二场-J-farm-二维树状数组

    二维树状数组真的还挺神奇的,更新也很神奇,比如我要更新一个区域内的和,我们的更新操作是这样的 add(x1,y1,z); add(x2+1,y2+1,z); add(x1,y2+1,-z); add( ...

  4. 牛客第二场 J farm

    White Rabbit has a rectangular farmland of n*m. In each of the grid there is a kind of plant. The pl ...

  5. 牛客第二场 C.message(计算几何+二分)

    题目传送:https://www.nowcoder.com/acm/contest/140/C 题意:有n个云层,每个云层可以表示为y=ax+b.每个飞机的航线可以表示为时间x时,坐标为(x,cx+d ...

  6. 第k小团(Bitset+bfs)牛客第二场 -- Kth Minimum Clique

    题意: 给你n个点的权值和连边的信息,问你第k小团的值是多少. 思路: 用bitset存信息,暴力跑一下就行了,因为满足树形结构,所以bfs+优先队列就ok了,其中记录下最后进入的点(以免重复跑). ...

  7. 2019牛客多校第二场A-Eddy Walker

    Eddy Walker 题目传送门 解题思路 因为走过所有的点就会停下来,又因为是从0出发的,所以当n>1时,在0停下来的概率为0,其他的为1/(n-1); 代码如下 #include < ...

  8. 2019牛客多校第二场BEddy Walker 2——BM递推

    题意 从数字 $0$ 除法,每次向前走 $i$ 步,$i$ 是 $1 \sim K$ 中等概率随机的一个数,也就是说概率都是 $\frac{1}{K}$.求落在过数字 $N$ 额概率,$N=-1$ 表 ...

  9. uestc summer training #4 牛客第一场

    A dp[i][j][k]可以n3地做 但是正解是找把问题转化为一个两点不相交路径 最终答案为C(n+m, n)2-C(n+m, m-1)C(n+m,n-1) B 把题目的矩阵看成无向图的邻接矩阵 这 ...

随机推荐

  1. mac重启nginx时报nginx.pid不存在的解决办法

    在安装nginx后,重启时发现报 nginx: [error] open() "/usr/local/var/run/nginx.pid" failed (2: No such f ...

  2. JavaScript 实现文件下载并重命名

    第一种是HTML官网中的方法<a href="/images/liang.jpg" download="文件名称">HTML5 中 a 标签提供了一 ...

  3. RabbitMQ MQTT协议和AMQP协议

    RabbitMQ MQTT协议和AMQP协议 1        序言... 1 1.1     RabbitMq结构... 1 1.2     RabbitMq消息接收... 4 1.3     Ex ...

  4. 标准库函数gets()和puts()

    问题: 用标准库函数gets()和puts()实现字符串的输入输出.函数gets()用于从键盘读入一个字符串(包括空格符).它仅以回车符作为分隔符.函数gets()中的参数应是一个已存储字符串的字符数 ...

  5. django xadmin安装

    安装方式一: 下载xadmin源码文件,下载之后,解压缩,将解压目录中的xadmin文件夹拷贝到项目项目文件中.下载地址:https://codeload.github.com/sshwsfc/xad ...

  6. 用grep来查询日志

    转自:http://www.itokit.com/2013/0308/74883.html linux系统中,利用grep打印匹配的上下几行   如果在只是想匹配模式的上下几行,grep可以实现.   ...

  7. TCP连接建立 之 同时打开

    假设两台设备双方均发送syn给对端,在发送syn之后状态处于SYN_SENT状态,此时双方均收到对端的发来的syn,则立即进入SYN_RECV状态,并且都向对端回复syn+ack,在收到syn+ack ...

  8. 黑马lavarel教程---13、分页

    黑马lavarel教程---13.分页 一.总结 一句话总结: - lavarel里面的分页操作和tp里面的分页操作几乎是一模一样的 - 控制器:$data=Lesson::paginate(2); ...

  9. ModuleNotFoundError: No module named '_sqlite3'的解决办法:pipenv的用法

    export PIPENV_VENV_IN_PROJECT=1pipenv --venvpipenv --where pipenv install -r requirements.txtpipenv ...

  10. Oracle 设置主键自增长

    如果想在Oracle数据库里实现数据表主键自增,我们似乎没有办法像MySql般直接定义列的属性来实现.不过对于这个数据库的常用功能,我们还是有办法实现的.这里将展示使用触发器来实现主键自增. 1.准备 ...