欧拉函数:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。

#include <bits/stdc++.h>

using namespace std;
const int maxn = 1e6;
bool vis[maxn];
int prime[maxn];
int phi[maxn]; void init()
{
memset(vis, false, sizeof(vis));
phi[1] = 1;
int cnt = 0;
for(int i = 2; i < maxn; i ++)
{
if(!vis[i]){
prime[cnt++] = i;
phi[i] = i - 1;
}
for(int j = 0; j < cnt && i * prime[j] < maxn; j ++)
{
vis[i * prime[j]] = true;
if(i % prime[j] == 0){
phi[i*prime[j]] = phi[i]*prime[j];
break;
}
else{
phi[i*prime[j]] = phi[i]*phi[prime[j]]; // phi[i]*(prime[j]-1);
}
}
}
} int main()
{
int n;
cin >> n;
init();
cout << phi[n]<<endl;
}

欧拉函数(线性筛)(超好Dong)的更多相关文章

  1. 【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

    题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 ...

  2. 【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

    向大(hei)佬(e)势力学(di)习(tou) Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪 ...

  3. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  4. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  5. 【BZOJ2401】陶陶的难题I 欧拉函数+线性筛

    [BZOJ2401]陶陶的难题I 题意:求,n<=1000000,T<=100000 题解:直接做是n*sqrt(n)的,显然会TLE,不过这题a和b都是循环到n,那么就可以进行如下的神奇 ...

  6. HDU6434 Count【欧拉函数 线性筛】

    HDU6434 I. Count T次询问,每次询问\(\sum_{i=1}^{n}\sum_{j=1}^{n-1}[gcd(i-j,i+j)=1]\) \(T\le 1e5, n \le 2e7\) ...

  7. 欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法

    [欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ( ...

  8. 欧拉函数线性求解以及莫比乌斯反演(Mobius)

    前言 咕咕了好久终于来学习莫反了 要不是不让在机房谁会发现数学一本通上有这么神奇的东西 就是没有性质的证明 然后花了两节数学课证明了一遍 舒服- 前置知识:欧拉函数,二项式定理(组合数) 会欧拉函数的 ...

  9. Bi-shoe and Phi-shoe(欧拉函数/素筛)题解

    Bi-shoe and Phi-shoe Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe ...

  10. lightoj1370欧拉函数/素数筛

    这题有两种解法,1是根据欧拉函数性质:素数的欧拉函数值=素数-1(可根据欧拉定义看出)欧拉函数定义:小于x且与x互质的数的个数 #include<map> #include<set& ...

随机推荐

  1. http请求之of_ordering_http_post

    //Public function of_ordering_http_post (string as_vipsj,string as_url) returns string //string as_v ...

  2. Python库的优雅安装及PyCharm虚拟环境配置

    一.安装python库 安装python库有几种方式: 1. 使用pip命令行,如:pip install Pillow 2. 在pycharm中安装 3. 使用Anaconda批量安装常用模块 在使 ...

  3. 并不对劲的bzoj4538:loj2049:p3250:[HNOI2016]网络

    题意 有一棵\(n\)(\(n\leq 10^5\))个点的树,\(m\)(\(m\leq 2\times 10^5\))个操作.操作有三种:1.给出\(u,v,k\),表示加入一条从\(u\)到\( ...

  4. MySQL中的数据库对象

    1.数据库中一般包含下列对象 表.约束.索引.触发器.序列.视图: 可以使用图形用户界面或通过显式执行语句来创建这些数据库对象.用于创建这些数据库对象的语句称为“数据定义语言”(DDL),它们通常以关 ...

  5. C#选择文件保存路劲

    private void button8_Click(object sender, EventArgs e) { FolderBrowserDialog dialog = new FolderBrow ...

  6. linux mint ubuntu 安装qq

    git clone https://gitee.com/wszqkzqk/deepin-wine-for-ubuntu.gitcd deepin-wine-for-ubuntu./install.sh ...

  7. ASP.NET 打包发布中没有Visual Studio Installer

    环境:win7 64位 : VisualStudio2015 问题描述 创建安装程序时,VisualStudio中没有打包安装程序的Visual Studio Installer功能 解决方法 下载V ...

  8. vue项目性能优化总结

    在使用elementUI构建公司管理系统时,发现首屏加载时间长,加载的网络资源比较多,对系统的体验性会差一点,而且用webpack打包的vuejs的vendor包会比较大.所以通过搜集网上所有对于vu ...

  9. Spring MVC之@RequestParam @RequestBody @RequestHeader 等详

    Spring MVC之@RequestParam @RequestBody @RequestHeader 等详     引言: 接上一篇文章,对@RequestMapping进行地址映射讲解之后,该篇 ...

  10. Oracle层次查询start with connect by

    博客参考:https://www.cnblogs.com/jerryxing/articles/2339352.html start with connect by 层次查询(Hierarchical ...