(flappbird) luo@luo-All-Series:~/MyFile/tf-faster-rcnn_box$

(flappbird) luo@luo-All-Series:~/MyFile/tf-faster-rcnn_box$

(flappbird) luo@luo-All-Series:~/MyFile/tf-faster-rcnn_box$

(flappbird) luo@luo-All-Series:~/MyFile/tf-faster-rcnn_box$

(flappbird) luo@luo-All-Series:~/MyFile/tf-faster-rcnn_box$

(flappbird) luo@luo-All-Series:~/MyFile/tf-faster-rcnn_box$ ./experiments/scripts/train_faster_rcnn.sh 0 pascal_voc_0712 res101
+ set -e
+ export PYTHONUNBUFFERED=True
+ PYTHONUNBUFFERED=True
+ GPU_ID=0
+ DATASET=pascal_voc_0712
+ NET=res101
+ array=($@)
+ len=3
+ EXTRA_ARGS=
+ EXTRA_ARGS_SLUG=
+ case ${DATASET} in
+ TRAIN_IMDB=voc_2007_trainval+voc_2012_trainval
+ TEST_IMDB=voc_2007_test
+ STEPSIZE='[200]'
+ ITERS=3200
+ ANCHORS='[8,16,32]'
+ RATIOS='[0.5,1,2]'
++ date +%Y-%m-%d_%H-%M-%S
+ LOG=experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-05-16_14-21-07
+ exec
++ tee -a experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-05-16_14-21-07
+ echo Logging output to experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-05-16_14-21-07
Logging output to experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-05-16_14-21-07
+ set +x
+ '[' '!' -f output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_3200.ckpt.index ']'
+ [[ ! -z '' ]]
+ CUDA_VISIBLE_DEVICES=0
+ time python ./tools/trainval_net.py --weight data/imagenet_weights/res101.ckpt --imdb voc_2007_trainval+voc_2012_trainval --imdbval voc_2007_test --iters 3200 --cfg experiments/cfgs/res101.yml --net res101 --set ANCHOR_SCALES '[8,16,32]' ANCHOR_RATIOS '[0.5,1,2]' TRAIN.STEPSIZE '[200]'
Called with args:
Namespace(cfg_file='experiments/cfgs/res101.yml', imdb_name='voc_2007_trainval+voc_2012_trainval', imdbval_name='voc_2007_test', max_iters=3200, net='res101', set_cfgs=['ANCHOR_SCALES', '[8,16,32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'TRAIN.STEPSIZE', '[200]'], tag=None, weight='data/imagenet_weights/res101.ckpt')
Using config:
{'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'DATA_DIR': '/home/luo/MyFile/tf-faster-rcnn_box/data',
'EXP_DIR': 'res101',
'MATLAB': 'matlab',
'MOBILENET': {'DEPTH_MULTIPLIER': 1.0,
'FIXED_LAYERS': 5,
'REGU_DEPTH': False,
'WEIGHT_DECAY': 4e-05},
'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
'POOLING_MODE': 'crop',
'POOLING_SIZE': 7,
'RESNET': {'FIXED_BLOCKS': 1, 'MAX_POOL': False},
'RNG_SEED': 3,
'ROOT_DIR': '/home/luo/MyFile/tf-faster-rcnn_box',
'RPN_CHANNELS': 512,
'TEST': {'BBOX_REG': True,
'HAS_RPN': True,
'MAX_SIZE': 1000,
'MODE': 'nms',
'NMS': 0.3,
'PROPOSAL_METHOD': 'gt',
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'RPN_TOP_N': 5000,
'SCALES': [600],
'SVM': False},
'TRAIN': {'ASPECT_GROUPING': False,
'BATCH_SIZE': 256,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'BIAS_DECAY': False,
'DISPLAY': 20,
'DOUBLE_BIAS': False,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'GAMMA': 0.1,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'LEARNING_RATE': 0.001,
'MAX_SIZE': 640,
'MOMENTUM': 0.9,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 256,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_ITERS': 500,
'SNAPSHOT_KEPT': 3,
'SNAPSHOT_PREFIX': 'res101_faster_rcnn',
'STEPSIZE': [200],
'SUMMARY_INTERVAL': 10,
'TRUNCATED': False,
'USE_ALL_GT': True,
'USE_FLIPPED': True,
'USE_GT': False,
'WEIGHT_DECAY': 0.0001},
'USE_E2E_TF': True,
'USE_GPU_NMS': False}
Loaded dataset `voc_2007_trainval` for training
Set proposal method: gt
Appending horizontally-flipped training examples...
wrote gt roidb to /home/luo/MyFile/tf-faster-rcnn_box/data/cache/voc_2007_trainval_gt_roidb.pkl
done
Preparing training data...
done
Loaded dataset `voc_2012_trainval` for training
Set proposal method: gt
Appending horizontally-flipped training examples...
wrote gt roidb to /home/luo/MyFile/tf-faster-rcnn_box/data/cache/voc_2012_trainval_gt_roidb.pkl
done
Preparing training data...
done
3100 roidb entries
Output will be saved to `/home/luo/MyFile/tf-faster-rcnn_box/output/res101/voc_2007_trainval+voc_2012_trainval/default`
TensorFlow summaries will be saved to `/home/luo/MyFile/tf-faster-rcnn_box/tensorboard/res101/voc_2007_trainval+voc_2012_trainval/default`
Loaded dataset `voc_2007_test` for training
Set proposal method: gt
Preparing training data...
wrote gt roidb to /home/luo/MyFile/tf-faster-rcnn_box/data/cache/voc_2007_test_gt_roidb.pkl
done
388 validation roidb entries
Filtered 0 roidb entries: 3100 -> 3100
Filtered 0 roidb entries: 388 -> 388
2019-05-16 14:21:10.101640: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Solving...
/home/luo/anaconda3/envs/flappbird/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:98: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Variables restored: resnet_v1_101/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Loaded.
Fix Resnet V1 layers..
Fixed.
iter: 20 / 3200, total loss: 1.135714
>>> rpn_loss_cls: 0.095185
>>> rpn_loss_box: 0.219110
>>> loss_cls: 0.245350
>>> loss_box: 0.193565
>>> lr: 0.001000
speed: 18.402s / iter
iter: 40 / 3200, total loss: 1.600461
>>> rpn_loss_cls: 0.235677
>>> rpn_loss_box: 0.519147
>>> loss_cls: 0.258725
>>> loss_box: 0.204415
>>> lr: 0.001000
speed: 18.246s / iter

iter: 60 / 3200, total loss: 1.026078
>>> rpn_loss_cls: 0.166990
>>> rpn_loss_box: 0.091634
>>> loss_cls: 0.133496
>>> loss_box: 0.251467
>>> lr: 0.001000
speed: 18.454s / iter
iter: 80 / 3200, total loss: 1.284394
>>> rpn_loss_cls: 0.224517
>>> rpn_loss_box: 0.456405
>>> loss_cls: 0.072983
>>> loss_box: 0.148006
>>> lr: 0.001000
speed: 18.529s / iter

iter: 80 / 3200, total loss: 1.284394
>>> rpn_loss_cls: 0.224517
>>> rpn_loss_box: 0.456405
>>> loss_cls: 0.072983
>>> loss_box: 0.148006
>>> lr: 0.001000
speed: 18.529s / iter
iter: 100 / 3200, total loss: 0.844565
>>> rpn_loss_cls: 0.175153
>>> rpn_loss_box: 0.030733
>>> loss_cls: 0.099979
>>> loss_box: 0.156224
>>> lr: 0.001000
speed: 18.616s / iter
iter: 120 / 3200, total loss: 1.405110
>>> rpn_loss_cls: 0.277845
>>> rpn_loss_box: 0.059538
>>> loss_cls: 0.414902
>>> loss_box: 0.270357
>>> lr: 0.001000
speed: 18.615s / iter
iter: 140 / 3200, total loss: 1.150603
>>> rpn_loss_cls: 0.331623
>>> rpn_loss_box: 0.227049
>>> loss_cls: 0.082486
>>> loss_box: 0.126985
>>> lr: 0.001000
speed: 18.609s / iter
iter: 160 / 3200, total loss: 0.838705
>>> rpn_loss_cls: 0.229634
>>> rpn_loss_box: 0.022866
>>> loss_cls: 0.052187
>>> loss_box: 0.151566
>>> lr: 0.001000
speed: 18.610s / iter
iter: 180 / 3200, total loss: 0.967498
>>> rpn_loss_cls: 0.109740
>>> rpn_loss_box: 0.070803
>>> loss_cls: 0.195030
>>> loss_box: 0.209483
>>> lr: 0.001000
speed: 18.599s / iter
iter: 200 / 3200, total loss: 0.995808
>>> rpn_loss_cls: 0.190712
>>> rpn_loss_box: 0.229901
>>> loss_cls: 0.050683
>>> loss_box: 0.142080
>>> lr: 0.001000
speed: 18.590s / iter
Wrote snapshot to: /home/luo/MyFile/tf-faster-rcnn_box/output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_201.ckpt
iter: 220 / 3200, total loss: 0.947366
>>> rpn_loss_cls: 0.117479
>>> rpn_loss_box: 0.166095
>>> loss_cls: 0.127740
>>> loss_box: 0.153623
>>> lr: 0.000100
speed: 18.561s / iter
iter: 240 / 3200, total loss: 0.930408
>>> rpn_loss_cls: 0.091187
>>> rpn_loss_box: 0.028099
>>> loss_cls: 0.125474
>>> loss_box: 0.303220
>>> lr: 0.000100
speed: 18.544s / iter
iter: 260 / 3200, total loss: 0.783629
>>> rpn_loss_cls: 0.175871
>>> rpn_loss_box: 0.058733
>>> loss_cls: 0.047003
>>> loss_box: 0.119595
>>> lr: 0.000100
speed: 18.511s / iter
iter: 280 / 3200, total loss: 0.883182
>>> rpn_loss_cls: 0.122077
>>> rpn_loss_box: 0.177903
>>> loss_cls: 0.046702
>>> loss_box: 0.154073
>>> lr: 0.000100
speed: 18.496s / iter
iter: 300 / 3200, total loss: 0.723198
>>> rpn_loss_cls: 0.075850
>>> rpn_loss_box: 0.028023
>>> loss_cls: 0.059075
>>> loss_box: 0.177825
>>> lr: 0.000100
speed: 18.483s / iter
iter: 320 / 3200, total loss: 0.725044
>>> rpn_loss_cls: 0.070511
>>> rpn_loss_box: 0.083238
>>> loss_cls: 0.041324
>>> loss_box: 0.147548
>>> lr: 0.000100
speed: 18.473s / iter
iter: 340 / 3200, total loss: 0.664221
>>> rpn_loss_cls: 0.067252
>>> rpn_loss_box: 0.011058
>>> loss_cls: 0.053833
>>> loss_box: 0.149655
>>> lr: 0.000100
speed: 18.463s / iter
iter: 360 / 3200, total loss: 0.839485
>>> rpn_loss_cls: 0.020818
>>> rpn_loss_box: 0.048659
>>> loss_cls: 0.086075
>>> loss_box: 0.301513
>>> lr: 0.000100
speed: 18.459s / iter
iter: 380 / 3200, total loss: 0.825940
>>> rpn_loss_cls: 0.090821
>>> rpn_loss_box: 0.012293
>>> loss_cls: 0.102120
>>> loss_box: 0.238286
>>> lr: 0.000100
speed: 18.452s / iter
iter: 400 / 3200, total loss: 0.616738
>>> rpn_loss_cls: 0.038577
>>> rpn_loss_box: 0.005539
>>> loss_cls: 0.060641
>>> loss_box: 0.129562
>>> lr: 0.000100
speed: 18.448s / iter
iter: 420 / 3200, total loss: 0.788184
>>> rpn_loss_cls: 0.101999
>>> rpn_loss_box: 0.099144
>>> loss_cls: 0.070542
>>> loss_box: 0.134082
>>> lr: 0.000100
speed: 18.435s / iter
iter: 440 / 3200, total loss: 1.085997
>>> rpn_loss_cls: 0.093481
>>> rpn_loss_box: 0.019349
>>> loss_cls: 0.153576
>>> loss_box: 0.437174
>>> lr: 0.000100
speed: 18.429s / iter
iter: 460 / 3200, total loss: 1.423583
>>> rpn_loss_cls: 0.356634
>>> rpn_loss_box: 0.074707
>>> loss_cls: 0.249503
>>> loss_box: 0.360324
>>> lr: 0.000100
speed: 18.420s / iter
iter: 480 / 3200, total loss: 0.916140
>>> rpn_loss_cls: 0.162728
>>> rpn_loss_box: 0.249070
>>> loss_cls: 0.030213
>>> loss_box: 0.091716
>>> lr: 0.000100
speed: 18.414s / iter
iter: 500 / 3200, total loss: 0.761923
>>> rpn_loss_cls: 0.176307
>>> rpn_loss_box: 0.074660
>>> loss_cls: 0.031245
>>> loss_box: 0.097299
>>> lr: 0.000100
speed: 18.408s / iter
Wrote snapshot to: /home/luo/MyFile/tf-faster-rcnn_box/output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_500.ckpt
iter: 520 / 3200, total loss: 0.885430
>>> rpn_loss_cls: 0.113050
>>> rpn_loss_box: 0.014576
>>> loss_cls: 0.103602
>>> loss_box: 0.271790
>>> lr: 0.000100
speed: 18.402s / iter
iter: 540 / 3200, total loss: 0.590627
>>> rpn_loss_cls: 0.031484
>>> rpn_loss_box: 0.032061
>>> loss_cls: 0.015204
>>> loss_box: 0.129469
>>> lr: 0.000100
speed: 18.396s / iter
iter: 560 / 3200, total loss: 0.757290
>>> rpn_loss_cls: 0.222908
>>> rpn_loss_box: 0.022937
>>> loss_cls: 0.036551
>>> loss_box: 0.092485
>>> lr: 0.000100
speed: 18.388s / iter
iter: 580 / 3200, total loss: 0.652721
>>> rpn_loss_cls: 0.040262
>>> rpn_loss_box: 0.007916
>>> loss_cls: 0.077510
>>> loss_box: 0.144626
>>> lr: 0.000100
speed: 18.386s / iter
iter: 600 / 3200, total loss: 0.812826
>>> rpn_loss_cls: 0.156050
>>> rpn_loss_box: 0.142754
>>> loss_cls: 0.028783
>>> loss_box: 0.102833
>>> lr: 0.000100
speed: 18.379s / iter
iter: 620 / 3200, total loss: 0.633658
>>> rpn_loss_cls: 0.042237
>>> rpn_loss_box: 0.018296
>>> loss_cls: 0.040488
>>> loss_box: 0.150232
>>> lr: 0.000100
speed: 18.376s / iter
iter: 640 / 3200, total loss: 0.761751
>>> rpn_loss_cls: 0.181334
>>> rpn_loss_box: 0.024330
>>> loss_cls: 0.028081
>>> loss_box: 0.145603
>>> lr: 0.000100
speed: 18.370s / iter
iter: 660 / 3200, total loss: 0.847254
>>> rpn_loss_cls: 0.173398
>>> rpn_loss_box: 0.032888
>>> loss_cls: 0.055646
>>> loss_box: 0.202919
>>> lr: 0.000100
speed: 18.363s / iter
iter: 680 / 3200, total loss: 1.182448
>>> rpn_loss_cls: 0.095425
>>> rpn_loss_box: 0.015148
>>> loss_cls: 0.255668
>>> loss_box: 0.433806
>>> lr: 0.000100
speed: 18.359s / iter
iter: 700 / 3200, total loss: 0.664434
>>> rpn_loss_cls: 0.048816
>>> rpn_loss_box: 0.061652
>>> loss_cls: 0.052419
>>> loss_box: 0.119148
>>> lr: 0.000100
speed: 18.353s / iter
iter: 720 / 3200, total loss: 0.556006
>>> rpn_loss_cls: 0.026380
>>> rpn_loss_box: 0.015842
>>> loss_cls: 0.031052
>>> loss_box: 0.100334
>>> lr: 0.000100
speed: 18.347s / iter
iter: 740 / 3200, total loss: 0.867070
>>> rpn_loss_cls: 0.144368
>>> rpn_loss_box: 0.197553
>>> loss_cls: 0.022957
>>> loss_box: 0.119795
>>> lr: 0.000100
speed: 18.340s / iter
iter: 760 / 3200, total loss: 0.866542
>>> rpn_loss_cls: 0.136555
>>> rpn_loss_box: 0.022036
>>> loss_cls: 0.139475
>>> loss_box: 0.186081
>>> lr: 0.000100
speed: 18.338s / iter
iter: 780 / 3200, total loss: 0.539158
>>> rpn_loss_cls: 0.006686
>>> rpn_loss_box: 0.008340
>>> loss_cls: 0.030934
>>> loss_box: 0.110804
>>> lr: 0.000100
speed: 18.333s / iter
iter: 800 / 3200, total loss: 0.630556
>>> rpn_loss_cls: 0.020302
>>> rpn_loss_box: 0.007729
>>> loss_cls: 0.060629
>>> loss_box: 0.159504
>>> lr: 0.000100
speed: 18.330s / iter
iter: 820 / 3200, total loss: 0.861949
>>> rpn_loss_cls: 0.243657
>>> rpn_loss_box: 0.037310
>>> loss_cls: 0.102158
>>> loss_box: 0.096434
>>> lr: 0.000100
speed: 18.326s / iter
iter: 840 / 3200, total loss: 0.775692
>>> rpn_loss_cls: 0.100457
>>> rpn_loss_box: 0.011574
>>> loss_cls: 0.121838
>>> loss_box: 0.159434
>>> lr: 0.000100
speed: 18.324s / iter

iter: 860 / 3200, total loss: 0.700040
>>> rpn_loss_cls: 0.096587
>>> rpn_loss_box: 0.133827
>>> loss_cls: 0.014659
>>> loss_box: 0.072578
>>> lr: 0.000100
speed: 18.326s / iter
iter: 880 / 3200, total loss: 0.993830
>>> rpn_loss_cls: 0.060564
>>> rpn_loss_box: 0.050651
>>> loss_cls: 0.277251
>>> loss_box: 0.222975
>>> lr: 0.000100
speed: 18.320s / iter
iter: 900 / 3200, total loss: 0.826665
>>> rpn_loss_cls: 0.131063
>>> rpn_loss_box: 0.146693
>>> loss_cls: 0.047760
>>> loss_box: 0.118763
>>> lr: 0.000100
speed: 18.313s / iter
iter: 920 / 3200, total loss: 0.627156
>>> rpn_loss_cls: 0.042170
>>> rpn_loss_box: 0.043370
>>> loss_cls: 0.026695
>>> loss_box: 0.132535
>>> lr: 0.000100
speed: 18.309s / iter
iter: 940 / 3200, total loss: 0.712300
>>> rpn_loss_cls: 0.218988
>>> rpn_loss_box: 0.018594
>>> loss_cls: 0.025722
>>> loss_box: 0.066611
>>> lr: 0.000100
speed: 18.306s / iter
iter: 960 / 3200, total loss: 0.644802
>>> rpn_loss_cls: 0.047781
>>> rpn_loss_box: 0.058776
>>> loss_cls: 0.024861
>>> loss_box: 0.131001
>>> lr: 0.000100
speed: 18.301s / iter
iter: 980 / 3200, total loss: 0.777553
>>> rpn_loss_cls: 0.174956
>>> rpn_loss_box: 0.077568
>>> loss_cls: 0.035650
>>> loss_box: 0.106997
>>> lr: 0.000100
speed: 18.300s / iter
iter: 1000 / 3200, total loss: 0.700307
>>> rpn_loss_cls: 0.185844
>>> rpn_loss_box: 0.014858
>>> loss_cls: 0.053437
>>> loss_box: 0.063788
>>> lr: 0.000100
speed: 18.296s / iter
Wrote snapshot to: /home/luo/MyFile/tf-faster-rcnn_box/output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_1000.ckpt
iter: 1020 / 3200, total loss: 1.561479
>>> rpn_loss_cls: 0.218791
>>> rpn_loss_box: 0.087909
>>> loss_cls: 0.353962
>>> loss_box: 0.518438
>>> lr: 0.000100
speed: 18.291s / iter
iter: 1040 / 3200, total loss: 0.502503
>>> rpn_loss_cls: 0.008974
>>> rpn_loss_box: 0.041055
>>> loss_cls: 0.025225
>>> loss_box: 0.044872
>>> lr: 0.000100
speed: 18.285s / iter
iter: 1060 / 3200, total loss: 0.637269
>>> rpn_loss_cls: 0.074090
>>> rpn_loss_box: 0.005266
>>> loss_cls: 0.061586
>>> loss_box: 0.113950
>>> lr: 0.000100
speed: 18.281s / iter
iter: 1080 / 3200, total loss: 0.642691
>>> rpn_loss_cls: 0.077114
>>> rpn_loss_box: 0.061559
>>> loss_cls: 0.034487
>>> loss_box: 0.087155
>>> lr: 0.000100
speed: 18.275s / iter
iter: 1100 / 3200, total loss: 0.524348
>>> rpn_loss_cls: 0.013191
>>> rpn_loss_box: 0.000652
>>> loss_cls: 0.032331
>>> loss_box: 0.095801
>>> lr: 0.000100
speed: 18.270s / iter
iter: 1120 / 3200, total loss: 0.706850
>>> rpn_loss_cls: 0.095066
>>> rpn_loss_box: 0.120149
>>> loss_cls: 0.041416
>>> loss_box: 0.067846
>>> lr: 0.000100
speed: 18.266s / iter
iter: 1140 / 3200, total loss: 0.595206
>>> rpn_loss_cls: 0.016495
>>> rpn_loss_box: 0.018580
>>> loss_cls: 0.011464
>>> loss_box: 0.166294
>>> lr: 0.000100
speed: 18.267s / iter
iter: 1160 / 3200, total loss: 0.566315
>>> rpn_loss_cls: 0.027176
>>> rpn_loss_box: 0.006928
>>> loss_cls: 0.058577
>>> loss_box: 0.091263
>>> lr: 0.000100
speed: 18.264s / iter
iter: 1180 / 3200, total loss: 0.721197
>>> rpn_loss_cls: 0.007940
>>> rpn_loss_box: 0.019503
>>> loss_cls: 0.129445
>>> loss_box: 0.181939
>>> lr: 0.000100
speed: 18.261s / iter
iter: 1200 / 3200, total loss: 1.085414
>>> rpn_loss_cls: 0.062800
>>> rpn_loss_box: 0.031376
>>> loss_cls: 0.140148
>>> loss_box: 0.468720
>>> lr: 0.000100
speed: 18.257s / iter
iter: 1220 / 3200, total loss: 0.809050
>>> rpn_loss_cls: 0.045930
>>> rpn_loss_box: 0.008692
>>> loss_cls: 0.091820
>>> loss_box: 0.280240
>>> lr: 0.000100
speed: 18.256s / iter
iter: 1240 / 3200, total loss: 0.852630
>>> rpn_loss_cls: 0.077544
>>> rpn_loss_box: 0.008498
>>> loss_cls: 0.187316
>>> loss_box: 0.196905
>>> lr: 0.000100
speed: 18.256s / iter
iter: 1260 / 3200, total loss: 0.921142
>>> rpn_loss_cls: 0.196232
>>> rpn_loss_box: 0.177095
>>> loss_cls: 0.069370
>>> loss_box: 0.096080
>>> lr: 0.000100
speed: 18.254s / iter
iter: 1280 / 3200, total loss: 0.717685
>>> rpn_loss_cls: 0.042205
>>> rpn_loss_box: 0.008405
>>> loss_cls: 0.107432
>>> loss_box: 0.177279
>>> lr: 0.000100
speed: 18.251s / iter
iter: 1300 / 3200, total loss: 0.632722
>>> rpn_loss_cls: 0.033402
>>> rpn_loss_box: 0.022300
>>> loss_cls: 0.086850
>>> loss_box: 0.107807
>>> lr: 0.000100
speed: 18.248s / iter
iter: 1320 / 3200, total loss: 0.772178
>>> rpn_loss_cls: 0.011429
>>> rpn_loss_box: 0.025728
>>> loss_cls: 0.144161
>>> loss_box: 0.208497
>>> lr: 0.000100
speed: 18.247s / iter
iter: 1340 / 3200, total loss: 0.574342
>>> rpn_loss_cls: 0.065278
>>> rpn_loss_box: 0.014274
>>> loss_cls: 0.054535
>>> loss_box: 0.057895
>>> lr: 0.000100
speed: 18.245s / iter
iter: 1360 / 3200, total loss: 0.558155
>>> rpn_loss_cls: 0.023798
>>> rpn_loss_box: 0.014620
>>> loss_cls: 0.071267
>>> loss_box: 0.066110
>>> lr: 0.000100
speed: 18.242s / iter
iter: 1380 / 3200, total loss: 0.858874
>>> rpn_loss_cls: 0.205179
>>> rpn_loss_box: 0.135245
>>> loss_cls: 0.071671
>>> loss_box: 0.064420
>>> lr: 0.000100
speed: 18.238s / iter
iter: 1400 / 3200, total loss: 0.732612
>>> rpn_loss_cls: 0.158370
>>> rpn_loss_box: 0.011229
>>> loss_cls: 0.083095
>>> loss_box: 0.097560
>>> lr: 0.000100
speed: 18.236s / iter
iter: 1420 / 3200, total loss: 0.627655
>>> rpn_loss_cls: 0.040317
>>> rpn_loss_box: 0.020486
>>> loss_cls: 0.051815
>>> loss_box: 0.132679
>>> lr: 0.000100
speed: 18.233s / iter
iter: 1440 / 3200, total loss: 0.655073
>>> rpn_loss_cls: 0.050216
>>> rpn_loss_box: 0.010175
>>> loss_cls: 0.096886
>>> loss_box: 0.115441
>>> lr: 0.000100
speed: 18.232s / iter
iter: 1460 / 3200, total loss: 0.688864
>>> rpn_loss_cls: 0.008139
>>> rpn_loss_box: 0.005262
>>> loss_cls: 0.112913
>>> loss_box: 0.180196
>>> lr: 0.000100
speed: 18.229s / iter
iter: 1480 / 3200, total loss: 0.551693
>>> rpn_loss_cls: 0.035668
>>> rpn_loss_box: 0.057819
>>> loss_cls: 0.022829
>>> loss_box: 0.053024
>>> lr: 0.000100
speed: 18.227s / iter
iter: 1500 / 3200, total loss: 0.488739
>>> rpn_loss_cls: 0.008646
>>> rpn_loss_box: 0.022023
>>> loss_cls: 0.038600
>>> loss_box: 0.037119
>>> lr: 0.000100
speed: 18.225s / iter
Wrote snapshot to: /home/luo/MyFile/tf-faster-rcnn_box/output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_1500.ckpt
iter: 1520 / 3200, total loss: 0.618269
>>> rpn_loss_cls: 0.034364
>>> rpn_loss_box: 0.021852
>>> loss_cls: 0.079264
>>> loss_box: 0.100438
>>> lr: 0.000100
speed: 18.222s / iter
iter: 1540 / 3200, total loss: 0.590856
>>> rpn_loss_cls: 0.044112
>>> rpn_loss_box: 0.048106
>>> loss_cls: 0.018573
>>> loss_box: 0.097715
>>> lr: 0.000100
speed: 18.221s / iter
iter: 1560 / 3200, total loss: 0.497062
>>> rpn_loss_cls: 0.005680
>>> rpn_loss_box: 0.056790
>>> loss_cls: 0.019771
>>> loss_box: 0.032473
>>> lr: 0.000100
speed: 18.219s / iter
iter: 1580 / 3200, total loss: 0.510572
>>> rpn_loss_cls: 0.018339
>>> rpn_loss_box: 0.012231
>>> loss_cls: 0.035023
>>> loss_box: 0.062633
>>> lr: 0.000100
speed: 18.218s / iter
iter: 1600 / 3200, total loss: 0.762474
>>> rpn_loss_cls: 0.011902
>>> rpn_loss_box: 0.025903
>>> loss_cls: 0.084226
>>> loss_box: 0.258098
>>> lr: 0.000100
speed: 18.217s / iter
iter: 1620 / 3200, total loss: 0.619664
>>> rpn_loss_cls: 0.070678
>>> rpn_loss_box: 0.090305
>>> loss_cls: 0.026413
>>> loss_box: 0.049923
>>> lr: 0.000100
speed: 18.216s / iter
iter: 1640 / 3200, total loss: 0.668359
>>> rpn_loss_cls: 0.115850
>>> rpn_loss_box: 0.072974
>>> loss_cls: 0.023126
>>> loss_box: 0.074065
>>> lr: 0.000100
speed: 18.215s / iter
iter: 1660 / 3200, total loss: 0.476542
>>> rpn_loss_cls: 0.013453
>>> rpn_loss_box: 0.008222
>>> loss_cls: 0.043750
>>> loss_box: 0.028776
>>> lr: 0.000100
speed: 18.212s / iter
iter: 1680 / 3200, total loss: 0.801644
>>> rpn_loss_cls: 0.034519
>>> rpn_loss_box: 0.041312
>>> loss_cls: 0.082695
>>> loss_box: 0.260777
>>> lr: 0.000100
speed: 18.210s / iter
iter: 1700 / 3200, total loss: 0.659899
>>> rpn_loss_cls: 0.079036
>>> rpn_loss_box: 0.135803
>>> loss_cls: 0.016650
>>> loss_box: 0.046071
>>> lr: 0.000100
speed: 18.210s / iter
iter: 1720 / 3200, total loss: 0.468342
>>> rpn_loss_cls: 0.012049
>>> rpn_loss_box: 0.004853
>>> loss_cls: 0.039877
>>> loss_box: 0.029225
>>> lr: 0.000100
speed: 18.208s / iter
iter: 1740 / 3200, total loss: 0.669494
>>> rpn_loss_cls: 0.133278
>>> rpn_loss_box: 0.021838
>>> loss_cls: 0.053368
>>> loss_box: 0.078672
>>> lr: 0.000100
speed: 18.207s / iter
iter: 1760 / 3200, total loss: 0.805181
>>> rpn_loss_cls: 0.054967
>>> rpn_loss_box: 0.006205
>>> loss_cls: 0.149222
>>> loss_box: 0.212452
>>> lr: 0.000100
speed: 18.207s / iter
iter: 1780 / 3200, total loss: 0.562770
>>> rpn_loss_cls: 0.010171
>>> rpn_loss_box: 0.011130
>>> loss_cls: 0.051831
>>> loss_box: 0.107303
>>> lr: 0.000100
speed: 18.206s / iter
iter: 1800 / 3200, total loss: 0.478316
>>> rpn_loss_cls: 0.008894
>>> rpn_loss_box: 0.012034
>>> loss_cls: 0.040808
>>> loss_box: 0.034247
>>> lr: 0.000100
speed: 18.205s / iter
iter: 1820 / 3200, total loss: 0.675417
>>> rpn_loss_cls: 0.034308
>>> rpn_loss_box: 0.043778
>>> loss_cls: 0.080100
>>> loss_box: 0.134900
>>> lr: 0.000100
speed: 18.205s / iter
iter: 1840 / 3200, total loss: 0.694651
>>> rpn_loss_cls: 0.145737
>>> rpn_loss_box: 0.024914
>>> loss_cls: 0.046499
>>> loss_box: 0.095171
>>> lr: 0.000100
speed: 18.204s / iter
iter: 1860 / 3200, total loss: 0.718186
>>> rpn_loss_cls: 0.127955
>>> rpn_loss_box: 0.141966
>>> loss_cls: 0.027834
>>> loss_box: 0.038102
>>> lr: 0.000100
speed: 18.204s / iter
iter: 1880 / 3200, total loss: 0.610979
>>> rpn_loss_cls: 0.056210
>>> rpn_loss_box: 0.036878
>>> loss_cls: 0.035137
>>> loss_box: 0.100427
>>> lr: 0.000100
speed: 18.202s / iter
iter: 1900 / 3200, total loss: 0.614251
>>> rpn_loss_cls: 0.038210
>>> rpn_loss_box: 0.119047
>>> loss_cls: 0.018028
>>> loss_box: 0.056639
>>> lr: 0.000100
speed: 18.203s / iter
iter: 1920 / 3200, total loss: 0.684837
>>> rpn_loss_cls: 0.219620
>>> rpn_loss_box: 0.003852
>>> loss_cls: 0.028762
>>> loss_box: 0.050277
>>> lr: 0.000100
speed: 18.202s / iter
iter: 1940 / 3200, total loss: 1.401672
>>> rpn_loss_cls: 0.214034
>>> rpn_loss_box: 0.037252
>>> loss_cls: 0.231535
>>> loss_box: 0.536528
>>> lr: 0.000100
speed: 18.204s / iter
iter: 1960 / 3200, total loss: 0.469799
>>> rpn_loss_cls: 0.010847
>>> rpn_loss_box: 0.002549
>>> loss_cls: 0.039865
>>> loss_box: 0.034215
>>> lr: 0.000100
speed: 18.205s / iter
iter: 1980 / 3200, total loss: 0.835782
>>> rpn_loss_cls: 0.106353
>>> rpn_loss_box: 0.087398
>>> loss_cls: 0.108732
>>> loss_box: 0.150977
>>> lr: 0.000100
speed: 18.206s / iter
iter: 2000 / 3200, total loss: 0.546089
>>> rpn_loss_cls: 0.031715
>>> rpn_loss_box: 0.012836
>>> loss_cls: 0.040940
>>> loss_box: 0.078277
>>> lr: 0.000100
speed: 18.206s / iter
Wrote snapshot to: /home/luo/MyFile/tf-faster-rcnn_box/output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_2000.ckpt
iter: 2020 / 3200, total loss: 0.545260
>>> rpn_loss_cls: 0.012997
>>> rpn_loss_box: 0.019149
>>> loss_cls: 0.063566
>>> loss_box: 0.067229
>>> lr: 0.000100
speed: 18.206s / iter
iter: 2040 / 3200, total loss: 0.787888
>>> rpn_loss_cls: 0.210177
>>> rpn_loss_box: 0.132033
>>> loss_cls: 0.017017
>>> loss_box: 0.046343
>>> lr: 0.000100
speed: 18.207s / iter
iter: 2060 / 3200, total loss: 0.558850
>>> rpn_loss_cls: 0.045758
>>> rpn_loss_box: 0.025514
>>> loss_cls: 0.028708
>>> loss_box: 0.076553
>>> lr: 0.000100
speed: 18.207s / iter
iter: 2080 / 3200, total loss: 0.778635
>>> rpn_loss_cls: 0.150327
>>> rpn_loss_box: 0.013490
>>> loss_cls: 0.076305
>>> loss_box: 0.156196
>>> lr: 0.000100
speed: 18.207s / iter
iter: 2100 / 3200, total loss: 0.472197
>>> rpn_loss_cls: 0.005612
>>> rpn_loss_box: 0.001504
>>> loss_cls: 0.044761
>>> loss_box: 0.038007
>>> lr: 0.000100
speed: 18.207s / iter
iter: 2120 / 3200, total loss: 0.510658
>>> rpn_loss_cls: 0.040257
>>> rpn_loss_box: 0.027463
>>> loss_cls: 0.021357
>>> loss_box: 0.039268
>>> lr: 0.000100
speed: 18.209s / iter
iter: 2140 / 3200, total loss: 0.493665
>>> rpn_loss_cls: 0.018207
>>> rpn_loss_box: 0.011092
>>> loss_cls: 0.031297
>>> loss_box: 0.050758
>>> lr: 0.000100
speed: 18.210s / iter
iter: 2160 / 3200, total loss: 0.499123
>>> rpn_loss_cls: 0.023877
>>> rpn_loss_box: 0.030999
>>> loss_cls: 0.022961
>>> loss_box: 0.038975
>>> lr: 0.000100
speed: 18.213s / iter
iter: 2180 / 3200, total loss: 0.821315
>>> rpn_loss_cls: 0.123565
>>> rpn_loss_box: 0.022282
>>> loss_cls: 0.126760
>>> loss_box: 0.166399
>>> lr: 0.000100
speed: 18.215s / iter
iter: 2200 / 3200, total loss: 0.553932
>>> rpn_loss_cls: 0.036548
>>> rpn_loss_box: 0.024991
>>> loss_cls: 0.032991
>>> loss_box: 0.077094
>>> lr: 0.000100
speed: 18.215s / iter
iter: 2220 / 3200, total loss: 0.642815
>>> rpn_loss_cls: 0.007771
>>> rpn_loss_box: 0.011506
>>> loss_cls: 0.111587
>>> loss_box: 0.129644
>>> lr: 0.000100
speed: 18.217s / iter
iter: 2240 / 3200, total loss: 0.676707
>>> rpn_loss_cls: 0.080309
>>> rpn_loss_box: 0.091322
>>> loss_cls: 0.046900
>>> loss_box: 0.075871
>>> lr: 0.000100
speed: 18.218s / iter
iter: 2260 / 3200, total loss: 0.505770
>>> rpn_loss_cls: 0.007053
>>> rpn_loss_box: 0.005911
>>> loss_cls: 0.044429
>>> loss_box: 0.066073
>>> lr: 0.000100
speed: 18.219s / iter
iter: 2280 / 3200, total loss: 0.790898
>>> rpn_loss_cls: 0.308350
>>> rpn_loss_box: 0.017412
>>> loss_cls: 0.034671
>>> loss_box: 0.048161
>>> lr: 0.000100
speed: 18.221s / iter
iter: 2300 / 3200, total loss: 0.532100
>>> rpn_loss_cls: 0.027462
>>> rpn_loss_box: 0.053741
>>> loss_cls: 0.033639
>>> loss_box: 0.034956
>>> lr: 0.000100
speed: 18.224s / iter
iter: 2320 / 3200, total loss: 0.589589
>>> rpn_loss_cls: 0.057401
>>> rpn_loss_box: 0.070292
>>> loss_cls: 0.037399
>>> loss_box: 0.042196
>>> lr: 0.000100
speed: 18.226s / iter
iter: 2340 / 3200, total loss: 0.855214
>>> rpn_loss_cls: 0.089843
>>> rpn_loss_box: 0.269566
>>> loss_cls: 0.024967
>>> loss_box: 0.088538
>>> lr: 0.000100
speed: 18.228s / iter
iter: 2360 / 3200, total loss: 0.717431
>>> rpn_loss_cls: 0.076898
>>> rpn_loss_box: 0.158315
>>> loss_cls: 0.050144
>>> loss_box: 0.049776
>>> lr: 0.000100
speed: 18.230s / iter
iter: 2380 / 3200, total loss: 0.662857
>>> rpn_loss_cls: 0.206039
>>> rpn_loss_box: 0.003267
>>> loss_cls: 0.020686
>>> loss_box: 0.050567
>>> lr: 0.000100
speed: 18.232s / iter
iter: 2400 / 3200, total loss: 0.746430
>>> rpn_loss_cls: 0.118575
>>> rpn_loss_box: 0.016239
>>> loss_cls: 0.101525
>>> loss_box: 0.127796
>>> lr: 0.000100
speed: 18.233s / iter
iter: 2420 / 3200, total loss: 0.525143
>>> rpn_loss_cls: 0.016888
>>> rpn_loss_box: 0.017676
>>> loss_cls: 0.045701
>>> loss_box: 0.062582
>>> lr: 0.000100
speed: 18.235s / iter
iter: 2440 / 3200, total loss: 0.737239
>>> rpn_loss_cls: 0.078193
>>> rpn_loss_box: 0.022456
>>> loss_cls: 0.061732
>>> loss_box: 0.192565
>>> lr: 0.000100
speed: 18.235s / iter
iter: 2460 / 3200, total loss: 0.794321
>>> rpn_loss_cls: 0.161831
>>> rpn_loss_box: 0.136335
>>> loss_cls: 0.062428
>>> loss_box: 0.051433
>>> lr: 0.000100
speed: 18.238s / iter
iter: 2480 / 3200, total loss: 0.590657
>>> rpn_loss_cls: 0.047985
>>> rpn_loss_box: 0.059276
>>> loss_cls: 0.042091
>>> loss_box: 0.059014
>>> lr: 0.000100
speed: 18.239s / iter
iter: 2500 / 3200, total loss: 0.613719
>>> rpn_loss_cls: 0.012276
>>> rpn_loss_box: 0.012471
>>> loss_cls: 0.076417
>>> loss_box: 0.130265
>>> lr: 0.000100
speed: 18.241s / iter
Wrote snapshot to: /home/luo/MyFile/tf-faster-rcnn_box/output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_2500.ckpt
iter: 2520 / 3200, total loss: 0.654271
>>> rpn_loss_cls: 0.095726
>>> rpn_loss_box: 0.119870
>>> loss_cls: 0.026189
>>> loss_box: 0.030197
>>> lr: 0.000100
speed: 18.241s / iter
iter: 2540 / 3200, total loss: 0.476279
>>> rpn_loss_cls: 0.009193
>>> rpn_loss_box: 0.004208
>>> loss_cls: 0.034638
>>> loss_box: 0.045952
>>> lr: 0.000100
speed: 18.239s / iter
iter: 2560 / 3200, total loss: 0.625369
>>> rpn_loss_cls: 0.019211
>>> rpn_loss_box: 0.125371
>>> loss_cls: 0.040915
>>> loss_box: 0.057586
>>> lr: 0.000100
speed: 18.240s / iter
iter: 2580 / 3200, total loss: 0.584985
>>> rpn_loss_cls: 0.025460
>>> rpn_loss_box: 0.020770
>>> loss_cls: 0.048802
>>> loss_box: 0.107668
>>> lr: 0.000100
speed: 18.240s / iter
iter: 2600 / 3200, total loss: 0.516507
>>> rpn_loss_cls: 0.015200
>>> rpn_loss_box: 0.056073
>>> loss_cls: 0.038995
>>> loss_box: 0.023955
>>> lr: 0.000100
speed: 18.240s / iter
iter: 2620 / 3200, total loss: 0.582457
>>> rpn_loss_cls: 0.028390
>>> rpn_loss_box: 0.076542
>>> loss_cls: 0.024121
>>> loss_box: 0.071122
>>> lr: 0.000100
speed: 18.241s / iter
iter: 2640 / 3200, total loss: 0.569222
>>> rpn_loss_cls: 0.073077
>>> rpn_loss_box: 0.032400
>>> loss_cls: 0.040884
>>> loss_box: 0.040580
>>> lr: 0.000100
speed: 18.242s / iter
iter: 2660 / 3200, total loss: 0.524355
>>> rpn_loss_cls: 0.058348
>>> rpn_loss_box: 0.038125
>>> loss_cls: 0.017749
>>> loss_box: 0.027854
>>> lr: 0.000100
speed: 18.242s / iter
iter: 2680 / 3200, total loss: 0.519076
>>> rpn_loss_cls: 0.043049
>>> rpn_loss_box: 0.019109
>>> loss_cls: 0.031268
>>> loss_box: 0.043372
>>> lr: 0.000100
speed: 18.242s / iter
iter: 2700 / 3200, total loss: 0.482006
>>> rpn_loss_cls: 0.022864
>>> rpn_loss_box: 0.027816
>>> loss_cls: 0.034281
>>> loss_box: 0.014768
>>> lr: 0.000100
speed: 18.242s / iter
iter: 2720 / 3200, total loss: 0.848716
>>> rpn_loss_cls: 0.095160
>>> rpn_loss_box: 0.016932
>>> loss_cls: 0.121365
>>> loss_box: 0.232982
>>> lr: 0.000100
speed: 18.243s / iter
iter: 2740 / 3200, total loss: 0.492927
>>> rpn_loss_cls: 0.029951
>>> rpn_loss_box: 0.027604
>>> loss_cls: 0.027604
>>> loss_box: 0.025493
>>> lr: 0.000100
speed: 18.244s / iter
iter: 2760 / 3200, total loss: 0.594886
>>> rpn_loss_cls: 0.106875
>>> rpn_loss_box: 0.008636
>>> loss_cls: 0.041538
>>> loss_box: 0.055565
>>> lr: 0.000100
speed: 18.244s / iter
iter: 2780 / 3200, total loss: 0.538749
>>> rpn_loss_cls: 0.037678
>>> rpn_loss_box: 0.019155
>>> loss_cls: 0.038125
>>> loss_box: 0.061520
>>> lr: 0.000100
speed: 18.245s / iter
iter: 2800 / 3200, total loss: 0.468894
>>> rpn_loss_cls: 0.010169
>>> rpn_loss_box: 0.020934
>>> loss_cls: 0.005108
>>> loss_box: 0.050412
>>> lr: 0.000100
speed: 18.247s / iter
iter: 2820 / 3200, total loss: 0.499144
>>> rpn_loss_cls: 0.024749
>>> rpn_loss_box: 0.019493
>>> loss_cls: 0.035706
>>> loss_box: 0.036926
>>> lr: 0.000100
speed: 18.248s / iter
iter: 2840 / 3200, total loss: 0.630420
>>> rpn_loss_cls: 0.070317
>>> rpn_loss_box: 0.104080
>>> loss_cls: 0.042845
>>> loss_box: 0.030909
>>> lr: 0.000100
speed: 18.249s / iter
iter: 2860 / 3200, total loss: 0.553930
>>> rpn_loss_cls: 0.027323
>>> rpn_loss_box: 0.005669
>>> loss_cls: 0.057542
>>> loss_box: 0.081128
>>> lr: 0.000100
speed: 18.250s / iter
iter: 2880 / 3200, total loss: 0.532811
>>> rpn_loss_cls: 0.041538
>>> rpn_loss_box: 0.039164
>>> loss_cls: 0.026999
>>> loss_box: 0.042844
>>> lr: 0.000100
speed: 18.251s / iter
iter: 2900 / 3200, total loss: 0.606645
>>> rpn_loss_cls: 0.093004
>>> rpn_loss_box: 0.072453
>>> loss_cls: 0.032159
>>> loss_box: 0.026763
>>> lr: 0.000100
speed: 18.252s / iter
iter: 2920 / 3200, total loss: 0.610751
>>> rpn_loss_cls: 0.035319
>>> rpn_loss_box: 0.005256
>>> loss_cls: 0.064158
>>> loss_box: 0.123755
>>> lr: 0.000100
speed: 18.252s / iter
iter: 2940 / 3200, total loss: 0.590238
>>> rpn_loss_cls: 0.023853
>>> rpn_loss_box: 0.011993
>>> loss_cls: 0.036663
>>> loss_box: 0.135465
>>> lr: 0.000100
speed: 18.253s / iter
iter: 2960 / 3200, total loss: 0.732967
>>> rpn_loss_cls: 0.042913
>>> rpn_loss_box: 0.010557
>>> loss_cls: 0.060128
>>> loss_box: 0.237108
>>> lr: 0.000100
speed: 18.254s / iter
iter: 2980 / 3200, total loss: 0.596565
>>> rpn_loss_cls: 0.071422
>>> rpn_loss_box: 0.087485
>>> loss_cls: 0.026072
>>> loss_box: 0.029326
>>> lr: 0.000100
speed: 18.255s / iter
iter: 3000 / 3200, total loss: 0.449472
>>> rpn_loss_cls: 0.007425
>>> rpn_loss_box: 0.010065
>>> loss_cls: 0.028121
>>> loss_box: 0.021603
>>> lr: 0.000100
speed: 18.256s / iter
Wrote snapshot to: /home/luo/MyFile/tf-faster-rcnn_box/output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_3000.ckpt
iter: 3020 / 3200, total loss: 0.420432
>>> rpn_loss_cls: 0.006059
>>> rpn_loss_box: 0.003383
>>> loss_cls: 0.015263
>>> loss_box: 0.013469
>>> lr: 0.000100
speed: 18.256s / iter
iter: 3040 / 3200, total loss: 0.499304
>>> rpn_loss_cls: 0.028310
>>> rpn_loss_box: 0.016560
>>> loss_cls: 0.021902
>>> loss_box: 0.050277
>>> lr: 0.000100
speed: 18.257s / iter
iter: 3060 / 3200, total loss: 0.636695
>>> rpn_loss_cls: 0.132401
>>> rpn_loss_box: 0.043681
>>> loss_cls: 0.022125
>>> loss_box: 0.056233
>>> lr: 0.000100
speed: 18.258s / iter
iter: 3080 / 3200, total loss: 0.493683
>>> rpn_loss_cls: 0.031520
>>> rpn_loss_box: 0.012919
>>> loss_cls: 0.021214
>>> loss_box: 0.045777
>>> lr: 0.000100
speed: 18.259s / iter
iter: 3100 / 3200, total loss: 0.596595
>>> rpn_loss_cls: 0.068079
>>> rpn_loss_box: 0.014994
>>> loss_cls: 0.028614
>>> loss_box: 0.102655
>>> lr: 0.000100
speed: 18.260s / iter
iter: 3120 / 3200, total loss: 0.502758
>>> rpn_loss_cls: 0.014378
>>> rpn_loss_box: 0.032935
>>> loss_cls: 0.033033
>>> loss_box: 0.040161
>>> lr: 0.000100
speed: 18.263s / iter
iter: 3140 / 3200, total loss: 0.544400
>>> rpn_loss_cls: 0.042744
>>> rpn_loss_box: 0.029882
>>> loss_cls: 0.026032
>>> loss_box: 0.063492
>>> lr: 0.000100
speed: 18.266s / iter
iter: 3160 / 3200, total loss: 0.595721
>>> rpn_loss_cls: 0.087768
>>> rpn_loss_box: 0.085453
>>> loss_cls: 0.020308
>>> loss_box: 0.019943
>>> lr: 0.000100
speed: 18.267s / iter
iter: 3180 / 3200, total loss: 0.547231
>>> rpn_loss_cls: 0.021856
>>> rpn_loss_box: 0.027437
>>> loss_cls: 0.030406
>>> loss_box: 0.085284
>>> lr: 0.000100
speed: 18.269s / iter
iter: 3200 / 3200, total loss: 0.463937
>>> rpn_loss_cls: 0.009630
>>> rpn_loss_box: 0.001617
>>> loss_cls: 0.039288
>>> loss_box: 0.031156
>>> lr: 0.000100
speed: 18.272s / iter
Wrote snapshot to: /home/luo/MyFile/tf-faster-rcnn_box/output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_3200.ckpt
done solving

ubuntu tensorflow cpu faster-rcnn train data的更多相关文章

  1. Tensorflow版Faster RCNN源码解析(TFFRCNN) (2)推断(测试)过程不使用RPN时代码运行流程

    本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第二篇   推断(测试)过程不使用RPN时代码运行流程 作者:Jiang Wu  原文见:https://hom ...

  2. ubuntu tensorflow cpu Faster-RCNN配置参考

    https://blog.csdn.net/qq_36652619/article/details/85006559     (参考) https://blog.csdn.net/zcy0xy/art ...

  3. ubuntu tensorflow cpu faster-rcnn 测试自己训练的模型

    (flappbird) luo@luo-All-Series:~/MyFile/tf-faster-rcnn_box$ (flappbird) luo@luo-All-Series:~/MyFile/ ...

  4. Tensorflow版Faster RCNN源码解析(TFFRCNN) (3)推断(测试)过程使用RPN时代码运行流程

    本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第三篇   推断(测试)过程不使用RPN时代码运行流程 作者:Jiang Wu  原文见:https://hom ...

  5. Tensorflow版Faster RCNN源码解析(TFFRCNN) (1) VGGnet_test.py

    本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第1篇   VGGnet_test.py ----作者:Jiang Wu(吴疆),未经允许,禁止转载--- -- ...

  6. tensorflow的object detection的data augmention的使用

    在protoc的目录下有data augmention的提示,而且注意是repeated,也就是你要这样写: 不能写在一个data_aumentation_options下面,至于有哪些选项可以用,可 ...

  7. 新人如何运行Faster RCNN的tensorflow代码

    0.目的 刚刚学习faster rcnn目标检测算法,在尝试跑通github上面Xinlei Chen的tensorflow版本的faster rcnn代码时候遇到很多问题(我真是太菜),代码地址如下 ...

  8. (原)faster rcnn的tensorflow代码的理解

    转载请注明出处: https://www.cnblogs.com/darkknightzh/p/10043864.html 参考网址: 论文:https://arxiv.org/abs/1506.01 ...

  9. faster r-cnn 在CPU配置下训练自己的数据

    因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net ...

随机推荐

  1. linux(centos)下安装supervisor进程管理工具

    在接触supervisor进程管理工具之前,使用springboot打包部署到linux服务器的流程是这样子的,如下图所示: 上图展示的就是最一般的流程,如果项目是小项目或者demo可以这样子去部署, ...

  2. 用js刷剑指offer(二进制中一的个数)

    题目描述 输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. 牛客网链接 思路 如果一个整数不为0,那么这个整数至少有一位是1.如果我们把这个整数减1,那么原来处在整数最右边的1就会变为 ...

  3. bloomberg bulkfile 在oracle的存储

    文章导航 bloomberg bulkfile 解析 bloomberg bulkfile 在oracle的存储 一 表名和字段名称的命名规则 1.1. 表名以文件名称直接命名,将文件名中的" ...

  4. 一步一步pwn路由器之wr940栈溢出漏洞分析与利用

    前言 本文由 本人 首发于 先知安全技术社区: https://xianzhi.aliyun.com/forum/user/5274 这个是最近爆出来的漏洞,漏洞编号:CVE-2017-13772 固 ...

  5. Java锁--共享锁和ReentrantReadWriteLock

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3505809.html ReadWriteLock 和 ReentrantReadWriteLock介绍 ...

  6. ajax向后台传递数组参数并将后台响应的数据赋值给一个变量供其它插件使用

    1.在js中封装ajax向后台传递数组参数函数 //combogrid * * @Description 封装ajax向后台传递数组参数并将后台响应的数据赋值给一个变量方便其他插件使用该数据函数 * ...

  7. 2019HDU多校第六场 6641 TDL——乱搞&&思维题

    题意 设 $f(n, m)$ 为大于 $n$ 且与 $n$ 互质的数中第 $m$ 小的数,求满足 $(f(n, m) - n) \oplus n = k$ 的最小正整数 $n$ 分析 因为 $m \l ...

  8. 推荐一款在IntelliJ IDEA中使用微信/QQ的插件

    SmartIM SmartIM4IntelliJ 是一个 IntelliJ IDEA 上的 SmartIM(原 SmartQQ)插件,可以在 IDEA 中使用 QQ 或微信聊天. 功能 收发文本消息 ...

  9. mousemove([[data],fn])

    mousemove([[data],fn]) 概述 当鼠标指针在指定的元素中移动时,就会发生 mousemove 事件.大理石构件来图加工 mousemove事件处理函数会被传递一个变量——事件对象, ...

  10. 015_STM32程序移植之_NRF24L01模块

    STM32程序移植之NRF24L01模块 引脚接线图如下所示 STM32引脚 NRF24L01引脚 功能 GND GND 3.3V 3.3V PB8 CE PB9 CSN PB13 SCK PB15 ...