P1679 神奇的四次方数

题解

一看这就是个完全背包

m最多不会超过18^4,所以我们把x^4用数组存起来,然后考虑如何填满m,注意存到18^4,不然会像我一样RE。。。

那么问题就转化成完全背包问题,因为一个四次方数可以用多次

设计状态:

f [ i ] [ j ] 表示前 i 个数中,总和不超过 j ,的数的最少个数,

然后我们降一维实现代码即 f [ j ]

注意初始化 f[0]=0

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
#include<cstring>
#include<queue> using namespace std; typedef long long ll; inline int read()
{
int ans=;
char last=' ',ch=getchar();
while(ch<''||ch>'') last=ch,ch=getchar();
while(ch>=''&&ch<='') ans=ans*+ch-'',ch=getchar();
if(last=='-') ans=-ans;
return ans;
} int m,n;
int s[],f[]; int main()
{
m=read();
for(int i=;i<=;i++) s[i]=i*i*i*i; //之前只算到17,然后我就RE了
// for(int i=0;i<=17;i++) printf("%d:%d\n",i,p[i]);
memset(f,0x7f,sizeof(f));
f[]=; //这里初始化0
for(int i=;s[i]<=m;i++)
for(int j=s[i];j<=m;j++){
f[j]=min(f[j-s[i]]+,f[j]); //数组下标总不能是负数吧
}
printf("%d\n",f[m]);
return ;
}

彩蛋

拉格朗日四平方和定理:

四平方和定理说明每个正整数均可表示为n个整数的平方和。(n<=4)

虽然我也不知道这东西有啥用QWQ

完全背包---P1679 神奇的四次方数的更多相关文章

  1. P1679 神奇的四次方数

    P1679 神奇的四次方数用一些什么东西组成一个什么东西,要求什么东西最优,这时候要考虑背包,不过要分析清楚是什么类型的背包.这题显然是个完全背包. #include<iostream> ...

  2. 洛谷——P1679 神奇的四次方数

    P1679 神奇的四次方数 题目描述 在你的帮助下,v神终于帮同学找到了最合适的大学,接下来就要通知同学了.在班级里负责联络网的是dm同学,于是v神便找到了dm同学,可dm同学正在忙于研究一道有趣的数 ...

  3. 洛谷 P1679 神奇的四次方数

    P1679 神奇的四次方数 题目描述 在你的帮助下,v神终于帮同学找到了最合适的大学,接下来就要通知同学了.在班级里负责联络网的是dm同学,于是v神便找到了dm同学,可dm同学正在忙于研究一道有趣的数 ...

  4. 洛谷P1679神奇的四次方数--DP

    原题请戳>>https://www.luogu.org/problem/show?pid=1679<< 题目描述 在你的帮助下,v神终于帮同学找到了最合适的大学,接下来就要通知 ...

  5. 两个简单的动态规划问题,0-1背包和最大不相邻数累加和,附递归c代码

    最近面试经常被问到动态规划,所以自己做了一个总结,希望能进行深入的理解然后尝试能不能找到通用的解决手段.我觉得动态规划思想好理解,难的是怎么找出全部并且合理的子问题和出口. 我一般把问题分为两类,一类 ...

  6. day116:MoFang:显示背包解锁/未解锁格子数&显示背包的道具物品&背包解锁

    目录 1.显示背包的已解锁/未解锁格子数 2.显示背包中的道具物品 3.用户购买道具的时候,判断背包存储是否达到上限 4.道具也可以使用积分购买 5.在商城界面根据金额/积分显示不同商品 6.背包解锁 ...

  7. DP(第三版(较简单))

    突然很想找点DP题(被虐虐) 前言 我竟然还能想起来当时是怎么做的233,题都是随便找的,跟以前的代码重了就重了吧,反正风格变了qaq [2017-11-18]其实本来打算写好多好多的水题来着,不过要 ...

  8. 洛谷P3537 [POI2012]SZA-Cloakroom(背包)

    传送门 蠢了……还以为背包只能用来维护方案数呢……没想到背包这么神奇…… 我们用$dp[i]$表示当$c$的和为$i$时,所有的方案中使得最小的$b$最大时最小的$b$是多少 然后把所有的点按照$a$ ...

  9. --hdu 2191 悼念512汶川大地震遇难同胞——珍惜现在,感恩生活(多重背包)

    解题思路: 多重背包:第 i 件物品有 j 个可用. 本题中 第 p[i] 类大米 有 c[i] 袋大米可买 ,故本题为多重背包. n(总钱数).m(种类) p[i] 单价 h[i] 重量 c[i] ...

随机推荐

  1. SQLiteDatabase执行update、insert操作的时候,conflictAlgorithm参数的含义区别

    /** * When a constraint violation occurs, an immediate ROLLBACK occurs, * thus ending the current tr ...

  2. C# 中 Linq 操作 DataTable

    方法一:更简洁 Console.WriteLine(dt.Rows.OfType<DataRow>().First(x => x.Field<string>(" ...

  3. Hibernate入门第一讲——Hibernate框架的快速入门

    Hibernate框架的概述 什么是框架? 框架指的是软件的半成品,已经完成了部分功能. JavaEE开发的三层架构 了解框架的基本概念之后,我们就来看看Hibernate框架处于JavaEE开发的经 ...

  4. selenium网页截图和截图定位(带界面)

    from selenium import webdriver import time from PIL import Image driver = webdriver.Chrome() driver. ...

  5. 用js刷剑指offer(二叉树的镜像)

    题目描述 操作给定的二叉树,将其变换为源二叉树的镜像. 输入描述: 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 镜像二叉树 8 / \ 10 6 / \ / \ ...

  6. Ubuntu系统---终端下用g++进行c++项目

    Ubuntu系统---终端下用g++进行c++项目 目录 一.编译工具(g++/gcc)和编辑工具(vim/gedit)二.C语言 的编译与运行三.C++语言 的编译与运行四.gcc/g++的详细过程 ...

  7. mysql数据库高并发处理

    总体思想:短, 少, 分流 短: 1.页面静态化, 2.使用缓存 3.使用存储过程, 对于处理一次请求需要多次访问数据库的操作, 将操作整合到存储过程, 这样只需要一次数据库访问 4.延迟修改, 将修 ...

  8. MongoDB常用语句大全

    原文出处:https://www.cnblogs.com/--smile/p/11055204.html 直接输入mongo进入数据库 查询操作 查看当前数据库版本 db.version() //4. ...

  9. Springboot项目启动报org.springframework.beans.factory.UnsatisfiedDependencyException

    org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name 'hom ...

  10. JavaScript, JQuery事件委托

    1.引言 现实当中,前台MM收到快递后,她会判断收件人是谁,然后按照收件人的要求签收,甚至代为付款.(公司也不会容忍那么多员工站在门口就为了等快递); 这种事件委托还有个好处,就是即便公司又来很多员工 ...