题目链接:

[SDOI2019]快速查询

对于整个序列维护一个标记$(k,b)$表示序列的每个数的真实值为$k*a_{i}+b$(注意要实时维护$k$的逆元),并记录序列的和。

对于单点修改,将$a_{i}$修改为$val$,因为有序列标记,所以实际修改成$\frac{val-b}{k}$并开一个栈将这个位置压入栈中。

对于序列加和序列乘操作,直接修改标记与序列和即可,注意修改$k$时也要修改$b$。

对于序列赋值操作,将$k$赋成$0$,将$b$赋成$val$(即将操作看成先序列赋成$0$再序列加)并将之前压入栈中的数都弹出并清零(因为只有栈中的数和其他的不一样)。

查询时返回之前记录的值即可。因为每次单点修改只会进栈和出栈一次,所以可以保证序列赋值的时间复杂度。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int mod=10000019;
int n,m,t;
int s[10000010];
int v[100010];
int sum;
int cnt;
int ans;
int pls;
int mul=1;
int inv=1;
int ai,bi;
struct lty
{
int inv,val,opt,num;
}a[100010];
int quick(int x,int y)
{
int res=1;
while(y)
{
if(y&1)
{
res=1ll*res*x%mod;
}
y>>=1;
x=1ll*x*x%mod;
}
return res;
}
void change(int x,int y)
{
sum=(sum+1ll*(mod-v[x])*mul+mod-pls)%mod;
v[x]=1ll*(y-pls+mod)*inv%mod,s[++cnt]=x;
sum=(sum+y)%mod;
}
void add(int x)
{
sum=(sum+1ll*n*x%mod)%mod;
pls=(pls+x)%mod;
}
void cover(int x)
{
while(cnt)v[s[cnt--]]=0;
mul=inv=1,pls=x;
sum=1ll*n*x%mod;
}
void multi(int x,int y)
{
if(x)
{
sum=1ll*sum*x%mod,mul=1ll*mul*x%mod;
pls=1ll*pls*x%mod,inv=1ll*inv*y%mod;
}
else
{
cover(0);
}
}
int query(int x)
{
if(x==0)return sum;
else return (1ll*v[x]*mul+pls)%mod;
}
int main()
{
scanf("%d%d",&n,&m);
n%=mod;
for(int i=1;i<=m;i++)
{
scanf("%d",&a[i].opt);
if(a[i].opt==1||a[i].opt==5)scanf("%d",&a[i].num),s[++cnt]=a[i].num;
if(a[i].opt<=4)scanf("%d",&a[i].val),a[i].val=(a[i].val%mod+mod)%mod,a[i].inv=quick(a[i].val,mod-2);
}
sort(s+1,s+1+cnt);
cnt=unique(s+1,s+1+cnt)-s-1;
for(int i=1;i<=m;i++)
{
if(a[i].opt==1||a[i].opt==5)
{
a[i].num=lower_bound(s+1,s+1+cnt,a[i].num)-s;
}
}
scanf("%d",&t);
cnt=0;
for(int i=1;i<=t;i++)
{
scanf("%d%d",&ai,&bi);
ai%=m,bi%=m;
for(int j=1;j<=m;j++)
{
int now=(ai+1ll*j*bi)%m+1;
if(a[now].opt==1)change(a[now].num,a[now].val);
if(a[now].opt==2)add(a[now].val);
if(a[now].opt==3)multi(a[now].val,a[now].inv);
if(a[now].opt==4)cover(a[now].val);
if(a[now].opt==5)ans=(ans+query(a[now].num))%mod;
if(a[now].opt==6)ans=(ans+query(0))%mod;
}
}
printf("%d",ans);
}

[SDOI2019]快速查询——模拟的更多相关文章

  1. [SDOI2019]快速查询

    [SDOI2019]快速查询 [题目链接] 链接 [思路要点] 据说是 \(\text{SDOI2019}\) 最水的题 操作次数为 \(1e7\) 范围,显然要求每次操作 \(\mathcal{O} ...

  2. luogu P5358 [SDOI2019]快速查询【模拟(?)】

    把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法 ...

  3. 【洛谷5358】[SDOI2019] 快速查询(模拟)

    点此看题面 大致题意: 有单点赋值.全局加法.全局乘法.全局赋值.单点求值.全局求和\(6\)种操作.现在给出操作序列,以及\(t\)对正整数\(a_i,b_i\).让你处理\(t*q\)次操作,每次 ...

  4. vijos2051 SDOI2019 快速查询

    题目链接 吐槽 竟然让\(nlog\)的做法卡过去了.. 思路 因为\(1 \le q \le 10^5\),所以可以先对每个标准操作,所操作的位置进行重标号.这样所有的下标都是在\(10^5\)以内 ...

  5. 【题解】Luogu P5358 [SDOI2019]快速查询

    原题传送门 神鱼说这道题是强制离线(smog 我们珂以把被单点修改,单点查询的点单独拿出来处理,把每个数表示成\(mul*x+plus\) 初始状态下\(mul=1,plus=0\) 操作1:在总和中 ...

  6. SDOI2019快速查询

    链接 vijos 思路 虽然询问1e7,但他询问很有意思,所以最多修改1e5个. 先把他们修改的点缩小到1e5之内并没有什么影响. 然后维护mul和add.不修改很好弄,修改的点可以弄点式子加加减减弄 ...

  7. P5358 [SDOI2019]快速查询

    思路:...乱搞数据结构?? 提交:1次 题解: 观察到除了单点就是全局操作,所以我们维护一个全局加法标记add和乘法标记mul和答案sum. 单点修改时,比如我们要把 \(pos\) 位置改成 \( ...

  8. 快速查询List中指定的数据

    时间:2017/5/15 作者:李国君 题目:快速查询List中指定的数据 背景:当List中保存了大量的数据时,用传统的方法去遍历指定的数据肯定会效率低下,有一个方法就是类似于数据库查询那样,根据索 ...

  9. mysql 常用 sql 语句 - 快速查询

    Mysql 常用 sql 语句 - 快速查询 1.mysql 基础 1.1 mysql 交互         1.1.1 mysql 连接             mysql.exe -hPup    ...

随机推荐

  1. robot framework 关键字Switch Browser和Select Window的区别

    Switch Browser针对的是2个Open Browser以上的切换:Select Window针对的是1个Open Browser里面某个点击事件打开了另外一个新窗口 1.例子 Switch ...

  2. H5表单新特性

    1.HTML5表单新特性之——新的input type <input type=" "> HTML5之前已有的input type: text.password.rad ...

  3. 大专生自学web前端到找到工作的经验

    先做个自我介绍,我13年考上一所很烂专科民办的学校,学的是生物专业,具体的学校名称我就不说出来献丑了.13年我就辍学了,我在那样的学校,一年学费要1万多,但是根本没有人学习,我实在看不到希望,我就退学 ...

  4. js入门之内置数组对象 Array

    一. 数组 1. 创建数组的两种方式 1. 数组字面量 var array = [] 2. 数组的构造函数创建数组 var array = new Array(); 2. 如何判断一个变量是否是数组 ...

  5. Python 使用gevent下载图片案例

    import urllib.request import gevent from gevent import monkey monkey.patch_all() def downloader(img_ ...

  6. Session机制详解及分布式中Session共享解决方案

    一.为什么要产生Session http协议本身是无状态的,客户端只需要向服务器请求下载内容,客户端和服务器都不记录彼此的历史信息,每一次请求都是独立的. 为什么是无状态的呢?因为浏览器与服务器是使用 ...

  7. 七年总结常用 Git 命令清单

    我每天使用 Git ,但是很多命令记不住. 一般来说,日常使用只要记住下图6个命令,就可以了.但是熟练使用,恐怕要记住60-100个命令. 下面是我整理的常用 Git 命令清单.几个专用名词的译名如下 ...

  8. js 递归获取子节点所有父节点,深度遍历获取第一个子树

    前端需求. 递归 深度优先遍历算法 // 查找一个节点的所有父节点 familyTree (arr1, id) { var temp = [] var forFn = function (arr, i ...

  9. Linux命令——pr

    参考:Linux命令——column 前言 接触这个命令的初衷是我想把一个很长的单列输出设置成多列输出,奈何column的分列输出机制太智障,直到我发现了pr 参数 pr -# 输出指定的列数. -t ...

  10. CentOS8 NextCloud 私有云存储搭建

    本文首发:https://www.somata.work/2019/CentOS8NextCloudBuild.html 之前发现 Owncloud 越来越捞了,推出了企业版和社区版,近几日突然发现原 ...