题目大意

  有一个完全图,边有边权。

  对于每个 \(i\),求一棵生成树,使得( \(\sum_{j=1,j\neq i}^n\) \(j\) 到 \(i\) 的路径上边权最小值) 最小。

  \(n\leq 2000,W\leq {10}^9\)

题解

  记最小的边权 \(w\),这条边的一个端点为 \(s\)。

  那么 \(i\) 号点对应的生成树就是从 \(i\) 到 \(s\) 的一条路径,然后经过边权最小的边,再连向所有点。

  可以发现 \(i\) 到 \(s\) 的路径上除了最后一条边之外的边权是递减的。而且每条边的边权 \(<\) 后面所有边(除了最后一条边)的边权和。所以深度会 \(\leq O(\log W)\)。

  直接从每个点开始跑最短路就可以做到 \(O(n^2\log W)\) 。

  从 \(s\) 开始向每个点跑最短路就可以在 \(O(n^2)\) 内解决这道题了。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<functional>
#include<cmath>
#include<vector>
#include<assert.h>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const int N=2010;
int a[N][N];
int b[N];
ll s[N];
int n;
int mi[N];
int main()
{
open("a");
n=rd();
int w=0x7fffffff,t;
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
a[i][j]=a[j][i]=rd();
for(int i=1;i<=n;i++)
mi[i]=0x7fffffff;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(j!=i)
mi[i]=min(mi[i],a[i][j]);
for(int i=1;i<=n;i++)
if(mi[i]<w)
{
w=mi[i];
t=i;
}
b[t]=1;
s[t]=0;
for(int i=1;i<=n;i++)
if(i!=t)
s[i]=min(a[t][i]-w,2*mi[i]-2*w);
for(int i=1;i<n;i++)
{
int x=0;
for(int j=1;j<=n;j++)
if(!b[j]&&(!x||s[j]<s[x]))
x=j;
b[x]=1;
for(int k=1;k<=n;k++)
if(!b[k])
s[k]=min(s[k],s[x]+a[x][k]-w);
}
for(int i=1;i<=n;i++)
printf("%lld\n",s[i]+(ll)(n-1)*w);
return 0;
}

【XSY3370】道路建设 最短路的更多相关文章

  1. [JOISC2018]道路建设 LCT

    [JOISC2018]道路建设 LOJ传送门 考的时候打的大暴力,其实想到了LCT,但是思路有点没转过来.就算想到了估计也不能切,我没有在考场写LCT的自信... 其实这题不是让你直接用LCT维护答案 ...

  2. bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...

  3. 洛谷——P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  4. 洛谷 P2872 [USACO07DEC]道路建设Building Roads 题解

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  5. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级( 最短路 )

    最短路...多加一维表示更新了多少条路 -------------------------------------------------------------------------------- ...

  6. P1462 通往奥格瑞玛的道路 (二分+最短路)

    题目 P1462 通往奥格瑞玛的道路 给定\(n\)个点\(m\)条边,每个点上都有点权\(f[i]\),每条边上有边权,找一条道路,使边权和小于给定的数\(b\),并使最大点权最小. 解析 二分一下 ...

  7. [HAOI2012]道路(最短路DAG上计数)

    C国有n座城市,城市之间通过m条[b]单向[/b]道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同.我们需要对每 ...

  8. 2018年全国多校算法寒假训练营练习比赛(第四场)B:道路建设

    传送门:https://www.nowcoder.net/acm/contest/76/B 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 65536K,其他语言131072K 64b ...

  9. USACO 07DEC 道路建设(Building Roads)

    Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he ...

随机推荐

  1. GraphQL基础篇

    最近参与了一个大型项目,大型项目随着系统业务量的增大,不同的应用和系统共同使用着许多的服务接口API,而随着业务的变化和发展,不同的应用对相同资源的不同使用方法最终会导致需要维护的服务API数量呈现爆 ...

  2. 硬杠后端(后端坑系列)——Django前期工作

    Django是一个开放源代码的Web应用框架,由Python写成,采用了MVC的框架模式. MVC MVC是一种软件设计典范,用一种业务逻辑.数据.界面显示分离的方法组织代码,将业务逻辑聚集到一个部件 ...

  3. Java thrift服务器和客户端创建实例

    首先环境介绍一下: 1.IntelliJ IDEA 2017.1 2.thrift-0.9.3 相信大家在看我这篇文章的时候已经对thrift通信框架已有所调研,这里就不再赘述了,直接进入正题: &l ...

  4. 给萌新的Flexbox简易入门教程

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 原文出处:https://www.sitepoint.com/flexbox-css-flexible-bo ...

  5. 章节十、3-CSS Selector---用CSS Selector - ID定位元素

    一.如果元素的 ID 不唯一,或者是动态的,或者 name 以及 linktext 属性值也不唯一,对于这样的元素,我们 就需要考虑用 xpath或者css selector 来查找元素了,然后再对元 ...

  6. 关于写作那些事之利用 js 统计各大博客阅读量

    在日常文章数据统计的过程中,纯手动方式已经难以应付,于是乎,逐步开始了程序介入方式进行统计. 在上一节中,探索利用 csv 文件格式进行文章数据统计,本来以为能够应付一阵子,没想到仅仅一天我就放弃了. ...

  7. WebSocket-java实践

    websocket  主要用于  前端页面hmtl/jsp 与 后端进行socket得连接. 本例简单实现:一但后端接收到数据或者根据某些规则主动发送数据,那么可以根据不同用户等区别,发送给某个登陆得 ...

  8. Activi相关表归纳

    Activi相关归纳总结记录:        ACT_RE_* : 'RE'表示repository.这个前缀的表包含了流程定义和流程静态资源(图片,规则,等等). ACT_RU_* : 'RU'表示 ...

  9. redis数据库安装 redis持久化及主从复制

    ----------------------------------------安装redis-5.0.4---------------------------------------- wget h ...

  10. [已解决]ValueError: row index was 65536, not allowed by .xls format

    报错: ValueError: row index was 65536, not allowed by .xls format 解决方案: xlrd和xlwt处理的是xls文件,单个sheet最大行数 ...