题目大意

  有一个完全图,边有边权。

  对于每个 \(i\),求一棵生成树,使得( \(\sum_{j=1,j\neq i}^n\) \(j\) 到 \(i\) 的路径上边权最小值) 最小。

  \(n\leq 2000,W\leq {10}^9\)

题解

  记最小的边权 \(w\),这条边的一个端点为 \(s\)。

  那么 \(i\) 号点对应的生成树就是从 \(i\) 到 \(s\) 的一条路径,然后经过边权最小的边,再连向所有点。

  可以发现 \(i\) 到 \(s\) 的路径上除了最后一条边之外的边权是递减的。而且每条边的边权 \(<\) 后面所有边(除了最后一条边)的边权和。所以深度会 \(\leq O(\log W)\)。

  直接从每个点开始跑最短路就可以做到 \(O(n^2\log W)\) 。

  从 \(s\) 开始向每个点跑最短路就可以在 \(O(n^2)\) 内解决这道题了。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<functional>
#include<cmath>
#include<vector>
#include<assert.h>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const int N=2010;
int a[N][N];
int b[N];
ll s[N];
int n;
int mi[N];
int main()
{
open("a");
n=rd();
int w=0x7fffffff,t;
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
a[i][j]=a[j][i]=rd();
for(int i=1;i<=n;i++)
mi[i]=0x7fffffff;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(j!=i)
mi[i]=min(mi[i],a[i][j]);
for(int i=1;i<=n;i++)
if(mi[i]<w)
{
w=mi[i];
t=i;
}
b[t]=1;
s[t]=0;
for(int i=1;i<=n;i++)
if(i!=t)
s[i]=min(a[t][i]-w,2*mi[i]-2*w);
for(int i=1;i<n;i++)
{
int x=0;
for(int j=1;j<=n;j++)
if(!b[j]&&(!x||s[j]<s[x]))
x=j;
b[x]=1;
for(int k=1;k<=n;k++)
if(!b[k])
s[k]=min(s[k],s[x]+a[x][k]-w);
}
for(int i=1;i<=n;i++)
printf("%lld\n",s[i]+(ll)(n-1)*w);
return 0;
}

【XSY3370】道路建设 最短路的更多相关文章

  1. [JOISC2018]道路建设 LCT

    [JOISC2018]道路建设 LOJ传送门 考的时候打的大暴力,其实想到了LCT,但是思路有点没转过来.就算想到了估计也不能切,我没有在考场写LCT的自信... 其实这题不是让你直接用LCT维护答案 ...

  2. bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...

  3. 洛谷——P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  4. 洛谷 P2872 [USACO07DEC]道路建设Building Roads 题解

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  5. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级( 最短路 )

    最短路...多加一维表示更新了多少条路 -------------------------------------------------------------------------------- ...

  6. P1462 通往奥格瑞玛的道路 (二分+最短路)

    题目 P1462 通往奥格瑞玛的道路 给定\(n\)个点\(m\)条边,每个点上都有点权\(f[i]\),每条边上有边权,找一条道路,使边权和小于给定的数\(b\),并使最大点权最小. 解析 二分一下 ...

  7. [HAOI2012]道路(最短路DAG上计数)

    C国有n座城市,城市之间通过m条[b]单向[/b]道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同.我们需要对每 ...

  8. 2018年全国多校算法寒假训练营练习比赛(第四场)B:道路建设

    传送门:https://www.nowcoder.net/acm/contest/76/B 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 65536K,其他语言131072K 64b ...

  9. USACO 07DEC 道路建设(Building Roads)

    Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he ...

随机推荐

  1. DSAPI 键盘鼠标钩子

    通常,说到Hook键盘鼠标,总需要一大堆代码,涉及各种不明白的API.而在DSAPI中,可以说已经把勾子简化到不能再简化的地步.甚至不需要任何示例代码即会使用.那么如何实现呢? Private Wit ...

  2. J2SE学习历程

    2014/12/09 1.+两边有字符串的话,则另外的先转换为字符串再连接. int c = 12; System.out.println(“c=” + c); 2.如果a=2,b=a++,先赋值再运 ...

  3. SQLServer存储过程编写规则

    SQLServer编写规则 1.  存储过程 a)         在程序应用中,对于数据库“写”操作的功能通过存储过程来实现. b)        存储过程命名: SP_+表名(+功能名) 对于一个 ...

  4. 第四章:shiro的INI配置

    4.1 根对象SecurityManager 从之前的Shiro架构图可以看出,Shiro是从根对象SecurityManager进行身份验证和授权的:也就是所有操作都是自它开始的,这个对象是线程安全 ...

  5. .net开源工作流引擎ccflow Pop返回值设置

    关键词: 点击字段弹出返回值填充文本框或其他字段     表单自动填充   .net开源工作流  jflow工作流   ccflow   工作流引擎 应用场景 当我们的查询信息比较多我们希望有一个比较 ...

  6. 安卓5.0系统怎么无Root激活XPOSED框架的方法

    在大多团队的引流或业务操作中,基本上都需要使用安卓的强大Xposed框架,几天前,我们团队买来了一批新的安卓5.0系统,基本上都都是基于7.0以上系统,基本上都不能够获得Root的su权限,纵然一些能 ...

  7. 新坑:c#弄微信公众号

    微信公众号作为一个平台级别的产品,对商业应用来说,有很大的吸引力.如何让公众号更好的吸粉?靠内容不是一般小商户可以做到的,那是网红自媒体的强项.一般商户要怎么突围?那就是提供实用,有意义的功能给粉丝. ...

  8. 好代码是管出来的——.Net中的代码规范工具及使用

    上一篇文章介绍了编码标准中一些常用的工具,本篇就具体来介绍如何使用它们来完成代码管理. 本文主要内容有: Roslyn简介 开发基于Roslyn的代码分析器 常用的基于Roslyn的代码分析器 在.N ...

  9. C盘突然报警,空间不足,显示成红色了

    1.清理系统垃圾文件 将如下命令保存到一个bat文件中,执行,删除垃圾文件 @echo off net share c$ /del net share d$ /del net share e$ /de ...

  10. C# 匿名对象(匿名类型)、var、动态类型 dynamic——实用之:过滤类属性、字段实用dynamic

    例子 返回一个LIst<oject>类型 而oject含有 30个字段 而我只需要两个字段.这里实用dynamic 和 linq. 上代码: 注意select new {} 为匿名类型,这 ...