splay启发式合并

启发式合并其实就是把集合数量小的合并到集合数量大的里去。

怎么合并呢,直接一个一个插入就行了。。

用并查集维护连通性,find(i)可以找到所在splay的编号

这题好像还可以合并线段树来写,下次再补上。。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 100005;
int n, m, tot, fa[N<<5], ch[N<<5][2], size[N<<5], val[N<<5], root[N], parent[N], pos[N]; int find(int p){
while(p != parent[p]) parent[p] = parent[parent[p]], p = parent[p];
return p;
} bool isConnect(int p, int q){
return find(p) == find(q);
} int init(int v, int f){
++tot;
size[tot] = 1, val[tot] = v, fa[tot] = f;
ch[tot][0] = ch[tot][1] = 0;
return tot;
} void push_up(int x){
size[x] = size[ch[x][0]] + size[ch[x][1]] + 1;
} void rotate(int x){
int y = fa[x], z = fa[y], p = (ch[y][1] == x) ^ 1;
ch[y][p^1] = ch[x][p], fa[ch[x][p]] = y;
ch[z][ch[z][1] == y] = x, fa[x] = z;
ch[x][p] = y, fa[y] = x;
push_up(y), push_up(x);
} void splay(int rt, int x, int goal){
if(x == goal) return;
while(fa[x] != goal){
int y = fa[x], z = fa[y];
if(z != goal){
(ch[y][0] == x) ^ (ch[z][0] == y) ? rotate(x) : rotate(y);
}
rotate(x);
}
push_up(x);
if(goal == 0) root[rt] = x;
} int select(int rt, int k){
if(!root[rt]) return 0;
int cur = root[rt], p = size[ch[root[rt]][0]];
while(1){
if(p + 1 < k){
k -= p + 1;
cur = ch[cur][1];
}
else{
if(p + 1 == k) return val[cur];
cur = ch[cur][0];
}
p = size[ch[cur][0]];
}
} void insert(int rt, int x){
if(!root[rt]){
root[rt] = init(x, 0);
return;
}
int cur = root[rt];
while(ch[cur][x > val[cur]]){
if(val[cur] == x) break;
cur = ch[cur][x > val[cur]];
}
if(val[cur] == x){
splay(rt, cur, 0);
return;
}
ch[cur][x > val[cur]] = init(x, cur);
splay(rt, ch[cur][x > val[cur]], 0);
} void dfs(int x, int y){
if(!x) return;
dfs(ch[x][0], y);
dfs(ch[x][1], y);
insert(y, val[x]);
} void merge(int x, int y){
int fx = find(x), fy = find(y);
if(fx == fy) return;
if(size[root[fx]] > size[root[fy]]) swap(fx, fy);
parent[fx] = fy;
dfs(root[fx], fy);
} int main(){ n = read(), m = read();
for(int i = 0; i <= n; i ++) parent[i] = i;
for(int i = 1; i <= n; i ++){
int v = read();
root[i] = init(v, 0);
pos[v] = i;
}
for(int i = 0; i < m; i ++){
int x = read(), y = read();
if(isConnect(x, y)) continue;
merge(x, y);
}
int q = read();
while(q --){
char opt[5]; scanf("%s", opt);
int x = read(), y = read();
if(opt[0] == 'B'){
if(isConnect(x, y)) continue;
merge(x, y);
}
else if(opt[0] == 'Q'){
if(size[root[find(x)]] < y) printf("-1\n");
else printf("%d\n", pos[select(find(x), y)]);
}
}
return 0;
}

写个下动态开点的权值线段树,为啥跑出来比splay还要慢啊!这么玄学的吗。。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 100005;
int n, m, tot;
int tree[N<<5], root[N], lc[N<<5], rc[N<<5], pos[N], parent[N]; int find(int p){
while(p != parent[p]) parent[p] = parent[parent[p]], p = parent[p];
return p;
} int build(){
++tot;
tree[tot] = lc[tot] = rc[tot] = 0;
return tot;
} void push_up(int x){
tree[x] = tree[lc[x]] + tree[rc[x]];
} void modify(int rt, int l, int r, int k){
if(l == r){
tree[rt] ++;
return;
}
int mid = (l + r) >> 1;
if(k <= mid){
if(!lc[rt]) lc[rt] = build();
modify(lc[rt], l, mid, k);
}
else{
if(!rc[rt]) rc[rt] = build();
modify(rc[rt], mid + 1, r, k);
}
push_up(rt);
} int merge(int x, int y, int l, int r){
if(!x) return y;
if(!y) return x;
if(l == r){
tree[x] += tree[y];
return x;
}
int mid = (l + r) >> 1;
lc[x] = merge(lc[x], lc[y], l, mid);
rc[x] = merge(rc[x], rc[y], mid + 1, r);
push_up(x);
return x;
} int query(int rt, int l, int r, int k){
if(l == r) return l;
int mid = (l + r) >> 1;
if(k <= tree[lc[rt]]) return query(lc[rt], l, mid, k);
return query(rc[rt], mid + 1, r, k - tree[lc[rt]]);
} int main(){ n = read(), m = read();
for(int i = 0; i <= n; i ++) parent[i] = i;
for(int i = 1; i <= n; i ++){
int v = read();
pos[v] = i, root[i] = build(), modify(root[i], 1, n, v);
}
for(int i = 0; i < m; i ++){
int x = read(), y = read();
int fx = find(x), fy = find(y);
if(fx == fy) continue;
parent[fy] = fx;
root[fx] = merge(root[fx], root[fy], 1, n);
}
int q = read();
while(q --){
char opt[10]; scanf("%s", opt);
if(opt[0] == 'B'){
int x = read(), y = read();
int fx = find(x), fy = find(y);
if(fx == fy) continue;
parent[fy] = fx;
root[fx] = merge(root[fx], root[fy], 1, n);
}
else if(opt[0] == 'Q'){
int x = read(), k = read();
if(tree[root[find(x)]] < k) printf("-1\n");
else printf("%d\n", pos[query(root[find(x)], 1, n, k)]);
}
}
return 0;
}

BZOJ 2733 永无乡的更多相关文章

  1. bzoj 2733 永无乡 - 并查集 - 线段树

    永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...

  2. bzoj 2733 永无乡 线段树

    题目: 支持两种操作: 合并两点所在的联通块 查询某点所在联通块内权值第k小. 题解 平衡树启发式合并随便搞一搞就好了. 我写了一个线段树合并 #include <cstdio> #inc ...

  3. bzoj2733永无乡

    永无乡 HYSBZ - 2733 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接, ...

  4. BZOJ 2733: [HNOI2012]永无乡 启发式合并treap

    2733: [HNOI2012]永无乡 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  5. bzoj 2733: [HNOI2012]永无乡 离线+主席树

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1167  Solved: 607[Submit][Status ...

  6. BZOJ 2733: [HNOI2012]永无乡(treap + 启发式合并 + 并查集)

    不难...treap + 启发式合并 + 并查集 搞搞就行了 --------------------------------------------------------------------- ...

  7. BZOJ 2733: [HNOI2012]永无乡 [splay启发式合并]

    2733: [HNOI2012]永无乡 题意:加边,询问一个连通块中k小值 终于写了一下splay启发式合并 本题直接splay上一个节点对应图上一个点就可以了 并查集维护连通性 合并的时候,把siz ...

  8. bzoj 2733: [HNOI2012]永无乡 -- 线段树

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...

  9. Bzoj 2733: [HNOI2012]永无乡 数组Splay+启发式合并

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3955  Solved: 2112[Submit][Statu ...

随机推荐

  1. linux 指令备忘

    linux 指令备忘 1.ls [选项] [目录名 | 列出相关目录下的所有目录和文件 -a 列出包括.a开头的隐藏文件的所有文件 -A 通-a,但不列出"."和"..& ...

  2. 【网摘】C#.NET 在 MVC 中动态绑定下拉菜单的方法

    1. 已知下拉菜单列表项: 在 Controller 控制器类中输入已下代码  1 public class DemoController : Controller 2 { 3     public  ...

  3. div悬浮窗口设计来完成注册页面

    login.jsp页面 <script type="text/javascript" src="js/register.js"></scrip ...

  4. nginx系列10:通过upstream模块选择上游服务器和负载均衡策略round-robin

    upstream模块的使用方法 1,使用upstream和server指令来选择上游服务器 这两个指令的语法如下图: 示例: 2,对上游服务使用keepalive长连接 负载均衡策略round-rob ...

  5. vue 单文件组件中样式加载

    在写单文件组件时,一般都是把标签.脚本.样式写到一起,这样写个人感觉有点不够简洁,所以就想着把样式分离出去. 采用import加载样式 在局部作用域(scoped)采用@import加载进来的样式文件 ...

  6. Webpack 4教程 - 第六部分 增强开发时体验

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者.原文出处:https://wanago.io/2018/08/06/webpack-4-course-part ...

  7. Oracle 常用Sql 语句

    Oracle数据库常常被用作项目开发的数据库之一:有时隔段时间没使用就会忘记一些常用的sql语法,所以我们有必要记录下常用的sql 语句,当我们需要时可以快速找到并运用. 1 创建表空间.创建用户及授 ...

  8. Spark MLlib KMeans 聚类算法

    一.简介 KMeans 算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把分类样本点分到各个簇.然后按平均法重新计算各个簇的质心,从而确定新的簇心.一直迭代,直到簇心的移动距离小于某个给定的值. ...

  9. servlet之转发与重定向的区别

    转发(服务器端跳转):  一次请求 <jsp:forward> request.getRequestDispatcher("new.jsp").forward(requ ...

  10. NVIDIA-SMI系列命令总结

    1  NVIDIA-SMI介绍 nvidia-smi简称NVSMI,提供监控GPU使用情况和更改GPU状态的功能,是一个跨平台工具,它支持所有标准的NVIDIA驱动程序支持的Linux发行版以及从Wi ...