序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法。SMO由微软研究院的约翰·普莱特(John Platt)发明于1998年,目前被广泛使用于SVM的训练过程中,并在通行的SVM库libsvm中得到实现。

1998年,SMO算法发表在SVM研究领域内引起了轰动,因为先前可用的SVM训练方法必须使用复杂的方法,并需要昂贵的第三方二次规划工具。而SMO算法较好地避免了这一问题。

前面最后留下来一个对偶函数最后的优化问题,原式为:

-----------------这个是由拉格朗日方法 然后求偏导 列式带入核函数得到的目标函数

       

SMO就是要解这个凸二次规划问题,这里的C是个很重要的参数,它从本质上说是用来折中经验风险和置信风险的,C越大,置信风险越大,经验风险越小;并且所有的因子都被限制在了以C为边长的大盒子里。

算法详述

(1)、 KKT条件

SMO是以C-SVC的KKT条件为基础进行后续操作的,这个KKT条件是:

其中

上述条件其实就是KT互补条件,SVM学习——软间隔优化一文,有如下结论:



从上面式子可以得到的信息是:当时,松弛变量,此时有:,对应样本点就是误分点;当时,松弛变量为零,此时有,对应样本点就是内部点,即分类正确而又远离最大间隔分类超平面的那些样本点;而时,松弛变量为零,有,对应样本点就是支持向量。

(2)、凸优化问题停止条件

对于凸优化问题,在实现时总需要适当的停止条件来结束优化过程,停止条件可以是:

1、监视目标函数的增长率,在它低于某个容忍值时停止训练,这个条件是最直白和简单的,但是效果不好;

2、监视原问题的KKT条件,对于凸优化来说它们是收敛的充要条件,但是由于KKT条件本身是比较苛刻的,所以也需要设定一个容忍值,即所有样本在容忍值范围内满足KKT条件则认为训练可以结束;

3、监视可行间隙,它是原始目标函数值和对偶目标函数值的间隙,对于凸二次优化来说这个间隙是零,以一阶范数软间隔为例:

原始目标函数与对偶目标函数的差为:

定义比率:

,可以利用这个比率达到某个容忍值作为停止条件。

(3)、SMO思想

沿袭分解思想,固定“Chunking工作集”的大小为2,每次迭代只优化两个点的最小子集且可直接获得解析解,算法流程:

(4)、仅含两个Langrange乘子解析解

为了描述方便定义如下符号:

于是目标函数就变成了:

注意第一个约束条件:,可以将看作常数,有(为常数,我们不关心它的值),等式两边同时乘以,得到为常数,其值为,我们不关心它,)。将用上式替换则得到一个只含有变量的求极值问题:

这下问题就简单了,对求偏导数得到:

带入上式有:

                   

带入,用,表示误差项(可以想象,即使分类正确,的值也可能很大)、(是原始空间向特征空间的映射),这里可以看成是一个度量两个样本相似性的距离,换句话说,一旦选择核函数则意味着你已经定义了输入空间中元素的相似性

最后得到迭代式:

注意第二个约束条件——那个强大的盒子:,这意味着也必须落入这个盒子中,综合考虑两个约束条件,下图更直观:

异号的情形

同号的情形

可以看到两个乘子既要位于边长为C的盒子里又要在相应直线上,于是对于的界来说,有如下情况:

 

整理得下式:

又因为,消去后得到:

(5).综上可总结出SMO的算法框架

SMO算法是一个迭代优化算法。在每一个迭代步骤中,算法首先选取两个待更新的向量,此后分别计算它们的误差项,并根据上述结果计算出。最后再根据SVM的定义计算出偏移量。对于误差项而言,可以根据和b的增量进行调整,而无需每次重新计算。具体的算法如下:

1. 随机数初始化向量权重,并计算偏移b。(这一步初始化向量权重只要使符合上述的约束条件即可,原博文的程序就是range函数)

2.初始化误差项,其中

3.选取两个向量作为需要调整的点(例如第一次下标为1,2两点,第二次下标3,4...........),然后

其中(是原始空间向特征空间的映射),

4.if  >H   令=H  
if  <L  令=L (L,H前面已给出)

5.令

6.利用更新的修改和b的值

7.如果达到终止条件,则算法停止,否则转向3

算法补充说明:

 优化向量选择方法

可以采用启发式的方法选择每次迭代中需要优化的向量。第一个向量可以选取不满足支持向量机KKT条件的向量,亦即不满足

即:
  

               其中

的向量。而第二个向量可以选择使得最大的向量。

终止条件

SMO算法的终止条件可以为KKT条件对所有向量均满足,或者目标函数增长率小于某个阈值,即

(根据前面的凸优化问题停止条件所说,此效果可能不佳,可选择其他方法,见(2))

 

---------------------------------以下内容是有关可行间隙方法,乘子优化,SMO加速问题,是深化的内容------------------------------------------------

(6)、启发式的选择方法

根据选择的停止条件可以确定怎么样选择点能对算法收敛贡献最大,例如使用监视可行间隙的方法,一个最直白的选择就是首先优化那些最违反KKT条件的点,所谓违反KKT条件是指:

其中KKT条件

由前面的停止条件3可知,对可行间隙贡献最大的点是那些


其中

取值大的点,这些点导致可行间隙变大,因此应该首先优化它们(原因见原博文:http://www.cnblogs.com/vivounicorn/archive/2011/06/01/2067496.html)

SMO的启发式选择有两个策略:

启发式选择1:

最外层循环,首先,在所有样本中选择违反KKT条件的一个乘子作为最外层循环,用“启发式选择2”选择另外一个乘子并进行这两个乘子的优化,接着,从所有非边界样本中选择违反KKT条件的一个乘子作为最外层循环,用“启发式选择2”选择另外一个乘子并进行这两个乘子的优化(之所以选择非边界样本是为了提高找到违反KKT条件的点的机会),最后,如果上述非边界样本中没有违反KKT条件的样本,则再从整个样本中去找,直到所有样本中没有需要改变的乘子或者满足其它停止条件为止。

启发式选择2:

内层循环的选择标准可以从下式看出:

要加快第二个乘子的迭代速度,就要使最大,而在上没什么文章可做,于是只能使最大。

确定第二个乘子方法:

1、首先在非界乘子中寻找使得最大的样本;

2、如果1中没找到则从随机位置查找非界乘子样本;

3、如果2中也没找到,则从随机位置查找整个样本(包含界上和非界乘子)。

(7)、关于两乘子优化的说明

由式子

可知:

于是对于这个单变量二次函数而言,如果其二阶导数,则二次函数开口向下,可以用上述迭代的方法更新乘子,如果,则目标函数只能在边界上取得极值(此时二次函数开口向上),换句话说,SMO要能处理取任何值的情况,于是在时有以下式子:

1、时:

2、时:

3、                  

分别将乘子带入得到两种情况下的目标函数值: 。显然,哪种情况下目标函数值最大,则乘子就往哪儿移动,如果目标函数的差在某个指定精度范围内,说明优化没有进展。

另外发现,每一步迭代都需要计算输出进而得到,于是还要更新阈值,使得新的乘子满足KKT条件,考虑至少有一个在界内,则需要满足,于是的迭代可以这样得到:

1、设在界内,则:

又因为:

于是有:

等式两边同乘后移项得:

2、设在界内,则:

3、设都在界内,则:情况1和情况2的值相等,任取一个;

4、设都不在界内,则:取值为情况1和情况2之间的任意值。

(8)、提高SMO的速度

从实现上来说,对于标准的SMO能提高速度的地方有:

1、能用缓存的地方尽量用,例如,缓存核矩阵,减少重复计算,但是增加了空间复杂度;

2、如果SVM的核为线性核时候,可直接更新,毕竟每次计算的代价较高,于是可以利用旧的乘子信息来更新,具体如下:

,应用到这个性质的例子可以参见SVM学习——Coordinate
Desent Method。

3、关注可以并行的点,用并行方法来改进,例如可以使用MPI,将样本分为若干份,在查找最大的乘子时可以现在各个节点先找到局部最大点,然后再从中找到全局最大点;又如停止条件是监视对偶间隙,那么可以考虑在每个节点上计算出局部可行间隙,最后在master节点上将局部可行间隙累加得到全局可行间隙。

SMO的更多相关文章

  1. 机器学习——支持向量机(SVM)之Platt SMO算法

    Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描. 所谓 ...

  2. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  3. 支持向量机原理(四)SMO算法原理

    支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五) ...

  4. 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5

    上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...

  5. Index was outside the bounds of the array. (Microsoft.SqlServer.Smo)

    本地ssms是 安装Sqlserver 2008 r2 自带的 远端的server是sqlserver2014 可以连接,可以执行查询语句.但是,不能使用ssms生成对象的脚本.推测ssms 2008 ...

  6. 序列最小最优化算法(SMO)-SVM的求解(续)

    在前一篇文章中,我们给出了感知器和逻辑回归的求解,还将SVM算法的求解推导到了最后一步,在这篇文章里面,我们将给出最后一步的求解.也就是我们接下来要介绍的序列最小最优化算法. 序列最小最优化算法(SM ...

  7. SVM-非线性支持向量机及SMO算法

    SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大 ...

  8. SMO推导和代码-记录毕业论文4

    SMO的数学公式通过Platt的论文和看这个博客:http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html,大概弄懂了.推导以后 ...

  9. SVM之SMO最小序列

    转载自:JerryLead http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html 11 SMO优化算法(Sequential ...

  10. 附加数据库对于服务器失败(Microsoft.SqlServer.Smo),无法升级数据库,因为它是只读的,或者具有只读文件

    今天在将一个 SQL Server 2000 数据库附加到 SQL Server 2005时出现如下的错误:附加数据库对于服务器失败(Microsoft.SqlServer.Smo),无法升级数据库t ...

随机推荐

  1. 没有JavaScript的基础,我可以学习Angular2吗?

    Can I learn and understand Angular2 without understanding JavaScript? 没有JavaScript基础我能学习和理解Angular2吗 ...

  2. 剑指Offer——Java实现栈和队列的互模拟操作

    剑指Offer--Java实现栈和队列的互模拟操作 栈模拟队列   题目:JAVA实现用两个栈来实现一个队列,完成队列的Push和Pop操作.队列中的元素为int类型.   思路:其实就是把队列正常入 ...

  3. Python 通过继承实现标准对象的子类

    idict是dict的子类,它的键值和属性是同步的,并且有强大的默认值机制. 例如,假设x是idict的一个实例,且x['a']['b']=12,则有x.a.b=12.反之亦然; 假设'c'不在x的键 ...

  4. RE模块疑问

    待处理: >>> re.findall(r'[-+]*\d+(?:\.\d+)?','-++++---+123.012') ['-++++---+123.012'] >> ...

  5. 获取客户信息SQL

    /*取客户信息SQL*/ --客户信息 SELECT hou.name 业务实体, hca.account_number 客户编号, hp.party_name 客户名称, arp_addr_pkg. ...

  6. Java使用agent实现main方法之前

    创建Agent项目 PreMainExecutor 类,在main方法之前执行此方法 public class PreMainExecutor { public static void premain ...

  7. 带你深入理解STL之Deque容器

    在介绍STL的deque的容器之前,我们先来总结一下vector和list的优缺点.vector在内存中是分配一段连续的内存空间进行存储,其迭代器采用原生指针即可,因此其支持随机访问和存储,支持下标操 ...

  8. android推荐使用dialogFrament而不是alertDialog

    DialogFragment在android 3.0时被引入.是一种特殊的Fragment,用于在Activity的内容之上展示一个模态的对话框.典型的用于:展示警告框,输入框,确认框等等. 在Dia ...

  9. android git上开源的项目收藏

    本文为那些不错的Android开源项目第一篇--个性化控件(View)篇,主要介绍Android上那些不错个性化的View,包括ListView.ActionBar.Menu.ViewPager.Ga ...

  10. Linux常用网络命令整理

    Linux上有一些非常常用的命令,来帮助我们监控网络状况. 1.Tcpdump命令 tcpdump可以将网络中传送的数据包的"头"完全截获下来提供分析.它支持针对网络层.协议.主机 ...