本文可作为传智播客《张孝祥-Java多线程与并发库高级应用》的学习笔记。

这一节我们做一个缓存系统。

在读本节前

请先阅读

ReentrantReadWriteLock读写锁的使用1

第一版

public class CacheDemo {

    private Map<String, Object> cache = new HashMap<String, Object>();
    public static void main(String[] args) {
        CacheDemo cd = new CacheDemo();
        System.out.println("ss   "+cd.getData2("ss"));
        System.out.println("ss   "+cd.getData2("ss"));
        System.out.println("mm   "+cd.getData2("mm"));
        System.out.println("mm   "+cd.getData2("mm"));
    }

    public Object getData2(String key){
        Object o=cache.get(key);
        if (o==null) {        //标识1
            System.out.println("第一次查  没有"+key);
            o=Math.random();     //实际上从数据库中获得
            cache.put(key, o);
        }
        return o;
    }
}

运行结果:

第一次查  没有ss

ss   0.4045014284225158

ss   0.4045014284225158

第一次查  没有mm

mm   0.9994663041529088

mm   0.9994663041529088



似乎没有问题。

你觉得呢?

如果有三个线程同时第一次到了getData2()的标识1处(所查找的key也都一样),一检查o为null,然后就去查数据库。在这种情况下,就等于三个线程查同一个key,然后都去了数据库。

这显然是不合理的。

第二版 synchronized

最简单的办法

    public synchronized Object getData2(String key){

        //.....

}

第三版 锁

上一节我们提到了ReentrantLock可以替换synchronized,前者是一种更为面向对象的设计。那我们试试。

    private Lock l=new ReentrantLock(); //l作为CacheDemo的成员变量

    public Object getData3(String key) {
        l.lock();
        Object o=null;
        try {
            o = cache.get(key);
            if (o == null) { // 标识1
                System.out.println("第一次查  没有" + key);
                o = Math.random(); // 实际上从数据库中获得
                cache.put(key, o);
            }
        } finally {
            l.unlock();
        }
        return o;
    }

第三版可以吗?

可以个p。

为什么,自己想。

我们得使用ReentrantReadWriteLock,在同一个方法中既有读锁也有写锁。



首先我又一个问题:

对同一个线程,可以在加了读锁后,没有解开读锁前,再加写锁吗?

换句话说,下面的代码会停吗?

public class CacheDemo {

    private Map<String, Object> cache = new HashMap<String, Object>();
    private ReadWriteLock rwl = new ReentrantReadWriteLock();
    public static void main(String[] args) {
        CacheDemo cd = new CacheDemo();
        cd.getData2();
    }

    public void getData2(){
        rwl.readLock().lock();
        System.out.println(1);
        rwl.writeLock().lock();
        System.out.println(2);
        rwl.readLock().unlock();
        System.out.println(3);
        rwl.writeLock().unlock();
        System.out.println(4);
    }
}

亲自试一下,控制台输出1后,程序就不动了。



说明加写锁前,读锁得先解开。

第四版

即有读锁,又有写锁

   

public static void main(String[] args) {
        CacheDemo cd = new CacheDemo();
        System.out.println("ss   "+cd.getData4("ss"));
        System.out.println("ss   "+cd.getData4("ss"));

        System.out.println("mm   "+cd.getData4("mm"));
        System.out.println("mm   "+cd.getData4("mm"));
    }

    public Object getData4(String key){
        rwl.readLock().lock();
        Object o=null;
        try {
            o=cache.get(key);
            if (o==null) {
                System.out.println("第一次查  没有"+key);
                rwl.readLock().unlock();  //标识4
                rwl.writeLock().lock();
                try {
                    if(value==null){  //标识0
                       value = "aaaa";//实际调用 queryDB();
                       cache.put(key,value);
                    }
                } finally {
                    rwl.writeLock().unlock();
                }
                rwl.readLock().lock(); //标识1
            }
        }finally {
            rwl.readLock().unlock();  //标注2
        }
        return o;
    }                 

结果

第一次查  没有ss

ss   0.5989899889645358

ss   0.5989899889645358

第一次查  没有mm

mm   0.8534424949014686

mm   0.8534424949014686

这个还有三个问题

1为什么在标识2处还得解锁。

这个答案在上一节已经提过。



2为什么在标识1出还得加锁?

如果标识1处不加锁,且程序一直正常执行,那么到标识2处,它解谁的锁?





3为什么标识0出还要检查一次?

如果同时又三个线程运行到标识4(查找相同的key),其中一个获得写锁,写入数据后,释放了写锁。此时另外两个线程还需要去数据库跑一趟么?



另外把标识1处的加读锁,放到finally的前面称之为降级锁。对降级锁,我目前也不太清楚。

官方文档中给了一个例子就是关于降级锁,如下

class CachedData {
   Object data;
   volatile boolean cacheValid;
   final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

   void processCachedData() {
     rwl.readLock().lock();
     if (!cacheValid) {
        // Must release read lock before acquiring write lock
        rwl.readLock().unlock();
        rwl.writeLock().lock();
        try {
          // Recheck state because another thread might have
          // acquired write lock and changed state before we did.
          if (!cacheValid) {
            data = ...
            cacheValid = true;
          }
          // Downgrade by acquiring read lock before releasing write lock
          rwl.readLock().lock();
        } finally {
          rwl.writeLock().unlock(); // Unlock write, still hold read
        }
     }

     try {
       use(data);
     } finally {
       rwl.readLock().unlock();
     }
   }
 }

感谢glt

ReentrantReadWriteLock读写锁的使用2的更多相关文章

  1. ReentrantReadWriteLock读写锁的使用

    Lock比传统线程模型中的synchronized方式更加面向对象,与生活中的锁类似,锁本身也应该是一个对象.两个线程执行的代码片段要实现同步互斥的效果,它们必须用同一个Lock对象. 读写锁:分为读 ...

  2. 锁对象-Lock: 同步问题更完美的处理方式 (ReentrantReadWriteLock读写锁的使用/源码分析)

    Lock是java.util.concurrent.locks包下的接口,Lock 实现提供了比使用synchronized 方法和语句可获得的更广泛的锁定操作,它能以更优雅的方式处理线程同步问题,我 ...

  3. Java并发包源码学习系列:ReentrantReadWriteLock读写锁解析

    目录 ReadWriteLock读写锁概述 读写锁案例 ReentrantReadWriteLock架构总览 Sync重要字段及内部类表示 写锁的获取 void lock() boolean writ ...

  4. ReentrantReadWriteLock读写锁简单原理案例证明

    ReentrantReadWriteLock存在原因? 我们知道List的实现类ArrayList,LinkedList都是非线程安全的,Vector类通过用synchronized修饰方法保证了Li ...

  5. ReentrantReadWriteLock读写锁详解

    一.读写锁简介 现实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁.在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源:但是如果一个线 ...

  6. java多线程:并发包中ReentrantReadWriteLock读写锁的锁降级模板

    写锁降级为读锁,但读锁不可升级或降级为写锁. 锁降级是为了让当前线程感知到数据的变化. //读写锁 private ReentrantReadWriteLock lock=new ReentrantR ...

  7. java中ReentrantReadWriteLock读写锁的使用

    Lock比传统线程模型中的synchronized方式更加面向对象,与生活中的锁类似,锁本身也应该是一个对象.两个线程执行的代码片段要实现同步互斥的效果,它们必须用同一个Lock对象. 读写锁:分为读 ...

  8. java多线程:ReentrantReadWriteLock读写锁使用

    Lock比传统的线程模型synchronized更多的面向对象的方式.锁和生活似,应该是一个对象.两个线程运行的代码片段要实现同步相互排斥的效果.它们必须用同一个Lock对象. 读写锁:分为读锁和写锁 ...

  9. ReentrantReadWriteLock读写锁的使用1

    本文可作为传智播客<张孝祥-Java多线程与并发库高级应用>的学习笔记. 一个简单的例子 两个线程,一个不断打印a,一个不断打印b public class LockTest { publ ...

随机推荐

  1. 一个貌似比较吊的递归转换为loop--总算成功了.--第二弹

    前段时间用类似于散弹式编程的方式,各种猜测-运行验证-修正结果,最终成功转换了一个看起来比较有难度的递归函数.但总觉得很蛋疼,原因如下: 1.虽然正确,但是逻辑搞得比较复杂.现在去看,一头雾水,不知道 ...

  2. RE模块疑问

    待处理: >>> re.findall(r'[-+]*\d+(?:\.\d+)?','-++++---+123.012') ['-++++---+123.012'] >> ...

  3. Eclipse中设置VM参数

    eclipse.ini -Xms256m //设置堆最小值 -Xmx1024m //设置堆最大值 Eclipse 做JVM 的分析时,需要动态设置JVM的参数来进行各种测试, 可以在下图地方进行设置 ...

  4. 剑指Offer——笔试题+知识点总结

    剑指Offer--笔试题+知识点总结 情景回顾 时间:2016.9.23 12:00-14:00 19:00-21:00 地点:山东省网络环境智能计算技术重点实验室 事件:笔试 注意事项:要有大局观, ...

  5. (一二七)NSURLSession的基本用法 下载与数据获取

    简介 NSURLSession是苹果官方提供的一系列网络接口库,使用他们可以轻松实现下载和数据获取等任务.在上一篇文章中,我们介绍了使用NSURLConnection下载文件和断点续传的功能,实现起来 ...

  6. Android项目开发填坑记-Fragment的onBackPressed

    Github版 CSDN版 知识背景 Fragment在当前的Android开发中,有两种引用方式,一个是 Android 3.0 时加入的,一个是supportV4包中的.这里简称为Fragment ...

  7. SpringMVC源码分析--容器初始化(五)DispatcherServlet

    上一篇博客SpringMVC源码分析--容器初始化(四)FrameworkServlet我们已经了解到了SpringMVC容器的初始化,SpringMVC对容器初始化后会进行一系列的其他属性的初始化操 ...

  8. javascript之cookie对象

    属性 name          唯一必须设置的属性,表示cookie的名称 expires       指定cookie的存活周期,如不设置,浏览器关闭自动失效 path           决定c ...

  9. Android初级教程理论知识(第九章多媒体编程)

    多媒体概念 文字.图片.音频.视频 计算机图片大小的计算 图片大小 = 图片的总像素 * 每个像素占用的大小 单色图:每个像素占用1/8个字节 16色图:每个像素占用1/2个字节 256色图:每个像素 ...

  10. 【Unity Shaders】Vertex & Fragment Shader入门

    写在前面 三个月以前,在一篇讲卡通风格的Shader的最后,我们说到在Surface Shader中实现描边效果的弊端,也就是只对表面平缓的模型有效.这是因为我们是依赖法线和视角的点乘结果来进行描边判 ...