# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.
# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
#redis默认不是以守护线程的方式运行,可以通过该配置项修改,使用yes启用守护进程
daemonize no
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
# default. You can specify a custom pid file location here.
#当redis以守护进程方式运行时,会把pid写入到指定文件中
pidfile /var/run/redis.pid
# Accept connections on the specified port, default is 6379.
# If port 0 is specified Redis will not listen on a TCP socket.
#redis默认监听端口 6379
port 6379
# If you want you can bind a single interface, if the bind option is not
# specified all the interfaces will listen for incoming connections.
#绑定的主机地址
# bind 127.0.0.1
# Specify the path for the unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /tmp/redis.sock
# unixsocketperm 755
# Close the connection after a client is idle for N seconds (0 to disable)
#当客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
timeout 0
# Set server verbosity to 'debug'
# it can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
#指定日志记录级别,支持debug、verbose、notice和warning,默认是verbose
loglevel verbose
# Specify the log file name. Also 'stdout' can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
#日志记录方式,默认是标准输出,如果配置redis为守护进程方式运行,
#而这里又配置为日志记录方式为标准输出,则日志将被发送给/dev/null
logfile stdout
# To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# syslog-enabled no
# Specify the syslog identity.
# syslog-ident redis
# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# syslog-facility local0
# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
#设置数据库的数量,默认数据库为0,可以使用select <dbid>命令在连接上指定数据库id
databases 16
################################ SNAPSHOTTING #################################
#
# Save the DB on disk:
#
# save <seconds> <changes>
#
# Will save the DB if both the given number of seconds and the given
# number of write operations against the DB occurred.
#
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
#
# Note: you can disable saving at all commenting all the "save" lines.
#指定在多长时间内,有多少次更新操作,就讲数据同步到数据文件,可以多个条件配合
save 900 1
save 300 10
save 60 10000
# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
#指定存储至本地数据库时是否压缩数据,默认是yes,redis采用LZF压缩,如果为了节省CPU时间
#可以关闭该选项,但会导致数据库文件扁的巨大
rdbcompression yes
# The filename where to dump the DB
#指定本地数据库文件名
dbfilename dump.rdb
# The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# Also the Append Only File will be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
#指定本地数据库存放目录
dir ./
################################# REPLICATION #################################
# Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. Note that the configuration is local to the slave
# so for example it is possible to configure the slave to save the DB with a
# different interval, or to listen to another port, and so on.
#设置单本机为从服务时,设置主服务的IP地址及端口,在redis启动时,会自动从master进行数据同步
# slaveof <masterip> <masterport>
# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#当master服务设置了密码保护时,从服务连接master的密码
# masterauth <master-password>
# When a slave lost the connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
# still reply to client requests, possibly with out of data data, or the
# data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale data is set to 'no' the slave will reply with
# an error "SYNC with master in progress" to all the kind of commands
# but to INFO and SLAVEOF.
#
slave-serve-stale-data yes
# Slaves send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# repl-ping-slave-period 10
# The following option sets a timeout for both Bulk transfer I/O timeout and
# master data or ping response timeout. The default value is 60 seconds.
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# repl-timeout 60
################################## SECURITY ###################################
# Require clients to issue AUTH <PASSWORD> before processing any other
# commands. This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#设置redis连接密码,如果配置了连接密码,客户端在连接redis时需要通过AUTH <password> 命令提供密码,默认关闭
# requirepass foobared
# Command renaming.
#
# It is possilbe to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# of hard to guess so that it will be still available for internal-use
# tools but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possilbe to completely kill a command renaming it into
# an empty string:
#
# rename-command CONFIG ""
################################### LIMITS ####################################
# Set the max number of connected clients at the same time. By default there
# is no limit, and it's up to the number of file descriptors the Redis process
# is able to open. The special value '0' means no limits.
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#设置同一时间最大客户端连接数,默认无限制,redis可以同时打开的客户端连接数为redis进程
#可以打开的最大文件描述数,如果设置maxclient 0,表示不作限制。当客户端连接数到达限制时
#redis会关闭新的连接并向客户端返回max number of client reached错误信息
maxclients 100000
# Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys with an
# EXPIRE set. It will try to start freeing keys that are going to expire
# in little time and preserve keys with a longer time to live.
# Redis will also try to remove objects from free lists if possible.
#
# If all this fails, Redis will start to reply with errors to commands
# that will use more memory, like SET, LPUSH, and so on, and will continue
# to reply to most read-only commands like GET.
#
# WARNING: maxmemory can be a good idea mainly if you want to use Redis as a
# 'state' server or cache, not as a real DB. When Redis is used as a real
# database the memory usage will grow over the weeks, it will be obvious if
# it is going to use too much memory in the long run, and you'll have the time
# to upgrade. With maxmemory after the limit is reached you'll start to get
# errors for write operations, and this may even lead to DB inconsistency.
# 指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,
#Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,
#将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,
#Value会存放在swap区
# maxmemory <bytes>
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached? You can select among five behavior:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key accordingly to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys->random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
#
# Note: with all the kind of policies, Redis will return an error on write
# operations, when there are not suitable keys for eviction.
#
# At the date of writing this commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy volatile-lru
# LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can select as well the sample
# size to check. For instance for default Redis will check three keys and
# pick the one that was used less recently, you can change the sample size
# using the following configuration directive.
#
# maxmemory-samples 3
############################## APPEND ONLY MODE ###############################
# By default Redis asynchronously dumps the dataset on disk. If you can live
# with the idea that the latest records will be lost if something like a crash
# happens this is the preferred way to run Redis. If instead you care a lot
# about your data and don't want to that a single record can get lost you should
# enable the append only mode: when this mode is enabled Redis will append
# every write operation received in the file appendonly.aof. This file will
# be read on startup in order to rebuild the full dataset in memory.
#
# Note that you can have both the async dumps and the append only file if you
# like (you have to comment the "save" statements above to disable the dumps).
# Still if append only mode is enabled Redis will load the data from the
# log file at startup ignoring the dump.rdb file.
#
# IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append
# log file in background when it gets too big.
#指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,
#如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件
#是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no
appendonly no
# The name of the append only file (default: "appendonly.aof")
#指定更新日志文件名,默认为appendonly.aof
# appendfilename appendonly.aof
# The fsync() call tells the Operating System to actually write data on disk
# instead to wait for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# no:表示等操作系统进行数据缓存同步到磁盘(快)
# always: fsync after every write to the append only log . Slow, Safest.
# always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全)
# everysec: fsync only if one second passed since the last fsync. Compromise.
# everysec:表示每秒同步一次(折衷,默认值)
#
# The default is "everysec" that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# If unsure, use "everysec".
# appendfsync always
appendfsync everysec
# appendfsync no
# When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving the durability of Redis is
# the same as "appendfsync none", that in pratical terms means that it is
# possible to lost up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
no-appendfsync-on-rewrite no
# Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size will growth by the specified percentage.
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (or if no rewrite happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a precentage of zero in order to disable the automatic AOF
# rewrite feature.
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
################################## SLOW LOG ###################################
# The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
#
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands.
# The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
slowlog-log-slower-than 10000
# There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
slowlog-max-len 1024
################################ VIRTUAL MEMORY ###############################
### WARNING! Virtual Memory is deprecated in Redis 2.4
### The use of Virtual Memory is strongly discouraged.
### WARNING! Virtual Memory is deprecated in Redis 2.4
### The use of Virtual Memory is strongly discouraged.
# Virtual Memory allows Redis to work with datasets bigger than the actual
# amount of RAM needed to hold the whole dataset in memory.
# In order to do so very used keys are taken in memory while the other keys
# are swapped into a swap file, similarly to what operating systems do
# with memory pages.
#
# To enable VM just set 'vm-enabled' to yes, and set the following three
# VM parameters accordingly to your needs.
#指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,
#由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中
vm-enabled no
# vm-enabled yes
# This is the path of the Redis swap file. As you can guess, swap files
# can't be shared by different Redis instances, so make sure to use a swap
# file for every redis process you are running. Redis will complain if the
# swap file is already in use.
#
# The best kind of storage for the Redis swap file (that's accessed at random)
# is a Solid State Disk (SSD).
#
# *** WARNING *** if you are using a shared hosting the default of putting
# the swap file under /tmp is not secure. Create a dir with access granted
# only to Redis user and configure Redis to create the swap file there.
#虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
vm-swap-file /tmp/redis.swap
# vm-max-memory configures the VM to use at max the specified amount of
# RAM. Everything that deos not fit will be swapped on disk *if* possible, that
# is, if there is still enough contiguous space in the swap file.
#
# With vm-max-memory 0 the system will swap everything it can. Not a good
# default, just specify the max amount of RAM you can in bytes, but it's
# better to leave some margin. For instance specify an amount of RAM
# that's more or less between 60 and 80% of your free RAM.
# 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,
# 所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,
# 当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0
vm-max-memory 0
# Redis swap files is split into pages. An object can be saved using multiple
# contiguous pages, but pages can't be shared between different objects.
# So if your page is too big, small objects swapped out on disk will waste
# a lot of space. If you page is too small, there is less space in the swap
# file (assuming you configured the same number of total swap file pages).
#
# If you use a lot of small objects, use a page size of 64 or 32 bytes.
# If you use a lot of big objects, use a bigger page size.
# If unsure, use the default :)
# Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,
#但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,
#作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,
#则可以使用更大的page,如果不 确定,就使用默认值
vm-page-size 32
# Number of total memory pages in the swap file.
# Given that the page table (a bitmap of free/used pages) is taken in memory,
# every 8 pages on disk will consume 1 byte of RAM.
#
# The total swap size is vm-page-size * vm-pages
#
# With the default of 32-bytes memory pages and 134217728 pages Redis will
# use a 4 GB swap file, that will use 16 MB of RAM for the page table.
#
# It's better to use the smallest acceptable value for your application,
# but the default is large in order to work in most conditions.
#设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)
#是在放在内存中的,在磁盘上每8个pages将消耗1byte的内存。
vm-pages 134217728
# Max number of VM I/O threads running at the same time.
# This threads are used to read/write data from/to swap file, since they
# also encode and decode objects from disk to memory or the reverse, a bigger
# number of threads can help with big objects even if they can't help with
# I/O itself as the physical device may not be able to couple with many
# reads/writes operations at the same time.
#
# The special value of 0 turn off threaded I/O and enables the blocking
# Virtual Memory implementation.
#设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,
#那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4
vm-max-threads 4
############################### ADVANCED CONFIG ###############################
# Hashes are encoded in a special way (much more memory efficient) when they
# have at max a given numer of elements, and the biggest element does not
# exceed a given threshold. You can configure this limits with the following
# configuration directives.
#指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
hash-max-zipmap-entries 512
hash-max-zipmap-value 64
# Similarly to hashes, small lists are also encoded in a special way in order
# to save a lot of space. The special representation is only used when
# you are under the following limits:
list-max-ziplist-entries 512
list-max-ziplist-value 64
# Sets have a special encoding in just one case: when a set is composed
# of just strings that happens to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
set-max-intset-entries 512
# Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into an hash table
# that is rhashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
#
# The default is to use this millisecond 10 times every second in order to
# active rehashing the main dictionaries, freeing memory when possible.
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply form time to time
# to queries with 2 milliseconds delay.
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
#指定是否激活重置哈希,默认为开启
activerehashing yes
################################## INCLUDES ###################################
# Include one or more other config files here. This is useful if you
# have a standard template that goes to all redis server but also need
# to customize a few per-server settings. Include files can include
# other files, so use this wisely.
#指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件
# include /path/to/local.conf
# include /path/to/other.conf
- redis.conf配置信息详解
redis.conf配置信息详解 配置文件 # Redis 配置文件 # 当配置中需要配置内存大小时,可以使用 1k, 5GB, 4M 等类似的格式,其转换方式如下(不区分大小写) # # 1k =& ...
- redis 配置
一 Redis 支持写的指令 Redis大概的命令如下:set setnx setex appendincr decr rpush lpush rpushx lpushx linsert lset r ...
- redis配置详解
##redis配置详解 # Redis configuration file example. # # Note that in order to read the configuration fil ...
- Redis配置集群一(window)
因为接下来的项目要使用到redis作为我们项目的缓存,所以就花了一天时间研究了一下redis的一些用法,因为没转linux虚拟机,所以就决定先研究一下windows版本的redis集群.主要是redi ...
- redis 配置应用(摘)
Redis可以在没有配置文件的情况下通过内置的配置来启动,但是这种启动方式只适用于开发和测试. 合理的配置Redis的方式是提供一个Redis配置文件,这个文件通常叫做redis.conf. redi ...
- CentOS6.5下Tomcat7 Nginx Redis配置步骤
所有配置均在一台机器上完成,部署拓扑信息如下: 注意:由于Redis配置对jar包和tomcat版本比较严格,请务必使用tomcat7和本文中提供的jar包.下载地址: http://pan.baid ...
- JavaWEB中读取配置信息
第一种方法是使用java.io和java.util包,缺点是路径的概念要清晰, 例子: Properties prop = new Properties(); InputStream in = get ...
- Windows Redis默认配置文件,Redis配置不生效解决方案
Windows Redis默认配置文件,Redis配置不生效解决方案, Windows Redis自启动配置不生效解决方案,Windows Redis增加自动启动服务 >>>> ...
- springboot学习笔记-4 整合Druid数据源和使用@Cache简化redis配置
一.整合Druid数据源 Druid是一个关系型数据库连接池,是阿里巴巴的一个开源项目,Druid在监控,可扩展性,稳定性和性能方面具有比较明显的优势.通过Druid提供的监控功能,可以实时观察数据库 ...
随机推荐
- x264源代码简单分析:x264_slice_write()
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
- 《高性能MySQL》读书笔记(上)
<High Performance MySQL>真是本经典好书,从应用层到数据库到硬件平台,各种调优技巧.常见问题全都有所提及.数据库的各种概念技巧平时都有接触,像索引.分区.Shardi ...
- Java继承时的初始化顺序
Java程序在启动和运行时,需要首先完成初始化的工作.在涉及到继承.static成员变量等因素时,初始化的顺序就复杂起来.下面以一个例子说明继承时的Java初始化顺序. 例子: class Insec ...
- 利用ScrollView滑动属性实现点击查看更多
利用ScrollView的滚动实现点击查看更多 效果图 更新内容布局 <ScrollView android:id="@+id/sv_des" android:layout_ ...
- XML Schema
XML Schema 是基于 XML 的 DTD 替代者. XML Schema 描述 XML 文档的结构. XML Schema 语言也称作 XMLSchema 定义(XML Schema Defi ...
- Android初级教程通过简要分析“土司”源码,来自实现定义土司理论探讨
由于系统自带的土司瞬间即逝,而且非常难看.因此我们就希望自定义自己的土司风格.有些实例就是基于自定义土司完成的,例如金山卫士的火箭发射,基本原理就是个土司.但是在做出自己的土司风格之前,还是要简要分析 ...
- 步步为营---- MuleEsb学习(一) 扫盲篇
本篇文章是基于不断的接触GXPT之后,对其技术开始不断的积累学习^^^,有很多问题带给我了思考,对于如何的处理各个部分的流程?这个如何处理?太多的问题促使着我一步一步的学习,在师哥们的指导下,逐步的清 ...
- 【一天一道LeetCode】#371. Sum of Two Integers
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Calcula ...
- JAVA之旅(二十八)——File概述,创建,删除,判断文件存在,创建文件夹,判断是否为文件/文件夹,获取信息,文件列表,文件过滤
JAVA之旅(二十八)--File概述,创建,删除,判断文件存在,创建文件夹,判断是否为文件/文件夹,获取信息,文件列表,文件过滤 我们可以继续了,今天说下File 一.File概述 文件的操作是非常 ...
- Oracle分页存储过程及PLSQL中的调用脚本
撰写过程:网上搜集测试了好多的Oracle分页存储过程代码,经整理后终于通过测试,特分享给大家 测试步骤:1.运行创建包命令;2.运行创建存储过程命令;3.运行调用分页存储过程语句 测试环境:wind ...