【BZOJ4652】【NOI2016】循环之美(莫比乌斯反演,杜教筛)
【BZOJ4652】循环之美(莫比乌斯反演,杜教筛)
题解
到底在求什么呢。。。
首先不管他\(K\)进制的问题啦,真是烦死啦
所以,相当于有一个分数\(\frac{i}{j}\)
因为值要不相等
所以有\(i \perp j\),也就是\(gcd(i,j)=1\)
现在考虑\(K\)进制
先从熟悉的\(10\)进制入手
如果一个最简分数是纯循环小数
我们知道,他的分母里面不含\(2,5\)
而且,巧极了\(10=2*5\)
于是乎,\(YY\)一下
如果\(K\)进制中一个分数是纯循环小数
那么分母与\(K\)互质
证明戳这里(orz LCF 学长)
所以,问题就变成啦
\]
也就是
\]
换个顺序算
\]
\]
\]
把\(d\)提出来
\]
\]
\]
现在相当于要求两个东西的前缀和:
\]
\]
先看\(f(x)\)
\(x\)相当于被分为了若干个大小为\(k\)的段
若在第一段中,\(a \perp k\)
则 \((a+nk) \perp k\)
同样的,最后一段可能不满,所以可以单独拎出来考虑
所以,我们可以推出:
\]
\(k<=2000\)
所以预处理出\(k\)以内的值,就可以直接算了
现在的问题在于第二个\(S(x)\)
\]
\]
\]
\]
\]
\]
如果\(gcd(i,d)\neq1\),那么
\(\mu(id)=0\),对答案不会产生任何影响
\]
\]
\]
\]
这样子当\(k=1\)发现没法递归啦???
不记得这道题目里面推出来的\(\mu\)的前缀和是啥了??
所以杜教筛一发呀
现在,要求的答案就是:
\]
后面的\(\sum_j\)我们已经可以\(O(1)\)求啦
前面的利用记忆化也可以很开心的求了
复杂度??
我也不知道。。
反正能过就行啦
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 10000000
#define ll long long
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,K,N,m;
bool pp[5000];
int F[5000];
bool zs[MAX+10];
int tot,pri[MAX],mu[MAX],smu[MAX];
map<pair<int,int>,int> M;
void pre()
{
for(int i=1;i<=K;++i)pp[i]=__gcd(i,K)==1;
for(int i=1;i<=K;++i)F[i]=F[i-1]+pp[i];
zs[1]=true;mu[1]=1;
for(int i=2;i<=N;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=N;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else break;
}
}
for(int i=1;i<=N;++i)smu[i]=smu[i-1]+mu[i];
}
int SF(int x){return (x/K)*F[K]+F[x%K];}
int SS(int x,int k)
{
if((k==1&&x<=N)||(!x))return smu[x];
if(M[make_pair(x,k)])return M[make_pair(x,k)];
int ret=0;
if(k==1)
{
ret=1;
for(int i=2,j;i<=x;i=j+1)
{
j=x/(x/i);
ret-=(j-i+1)*SS(x/i,1);
}
}
else
{
for(int i=1;i*i<=k;++i)
if(k%i==0)
{
if(mu[i])ret+=SS(x/i,i);
if(i*i!=k&&mu[k/i])
ret+=SS(x/(k/i),k/i);
}
}
return M[make_pair(x,k)]=ret;
}
int main()
{
n=read();m=read();K=read();
N=MAX;pre();
ll ans=0,lt=0,nw=0;
for(int i=1,j;i<=min(n,m);i=j+1)
{
j=min(n/(n/i),m/(m/i));
nw=SS(j,K);
ans+=1ll*(nw-lt)*(n/i)*SF(m/i);
lt=nw;
}
printf("%lld\n",ans);
return 0;
}
【BZOJ4652】【NOI2016】循环之美(莫比乌斯反演,杜教筛)的更多相关文章
- NOI 2016 循环之美 (莫比乌斯反演+杜教筛)
题目大意:略 洛谷传送门 鉴于洛谷最近总崩,附上良心LOJ链接 任何形容词也不够赞美这一道神题 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{M}[gcd(i,j) ...
- BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- BZOJ4652 NOI2016循环之美(莫比乌斯反演+杜教筛)
因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y ...
- BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10 ...
- 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
随机推荐
- 有关static静态方法知识的收集
1.何时使用静态方法: 如果某些操作不依赖具体实例,那它就是静态的,反之如果某些操作是依赖具体实例的(例如访问一个特定会员的名称),那它就应该是实例化的. 2.静态方法和实例方法的区别主要体现在两个方 ...
- 本地创建yum源并安装lnmp
注意:安装系统时,文件类型要未xfs类型,root要分配最多的空间 1.挂载安装光盘mount -t iso9660 -o loop CentOS-7-x86_64-DVD-1511.iso /mnt ...
- 如何在Python中从零开始实现随机森林
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 决策树可能会受到高度变异的影响,使得结果对所使用的特定测试数据而言变得脆弱. 根据您的测试数据样本构建多个模型(称为套袋)可以减少这种差异,但是 ...
- System.in实现数据的键盘输入
System.in The "standard" input stream. This stream is already open and ready to supply inp ...
- C++11 标准库也有坑(time-chrono)
恰巧今天调试程序遇到时间戳问题, 于是又搜了搜关于取时间戳,以及时间戳转字符串的问题, 因为 time() 只能取到秒(win和linux) 想试试看能不能找到 至少可以取到毫秒的, 于是, 就找 ...
- SDP(7):Cassandra- Cassandra-Engine:Streaming
akka在alpakka工具包里提供了对cassandra数据库的streaming功能.简单来讲就是用一个CQL-statement读取cassandra数据并产生akka-stream的Sourc ...
- 表的操作(Oracle和DB2)
asc和desc 分别表示升序和降序 select * from tablename order by id desc :根据id字段按照降序排列,从大到小 select * from tablena ...
- centos/linux下的安装git
1.下载git wget https://github.com/git/git/archive/v2.14.1.zip 2.安装依赖 sudo yum -y install zlib-devel op ...
- 初学Python(第一课)
今天整理一下关于Python初学者的基础知识部分的第一课,因为之前学习过C,所以过于基础的知识就不详细记录了. Python相对于C\C++来说,在语法方面已经很简单了:甚至对于JavaScript也 ...
- 用yii2给app写接口(上)
Yii2如何实现RESTful风格的API 1.建立单独的应用程序 为了增加程序的可维护性,易操作性,我们选择新建一套应用程序,这也是为了和前台应用.后台应用区分开操作.有些人要嚷嚷了,为啥非得单独搞 ...