bzoj 2212: [Poi2011]Tree Rotations
Description
Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An). The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.
现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。
Solution
实现非常巧妙,在线段树合并时可以直接统计
具体思想:
x子树内的逆序对数=左儿子内部的逆序对数+右儿子内部的逆序对数+左右儿子组合的逆序对数
前两项与左右儿子的顺序无关,只需要决策最后一项即可,一路推到根节点即为答案
\(t1+=s[ls[x]]*s[rs[y]]\)
\(t2+=s[rs[x]]*s[ls[y]]\)
在合并时顺便统计两种决策,最后答案加上 \(Min(t1,t2)\)
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=400005;
int root[N],val[N],totnode=0,cnt=1,ls[N*20],rs[N*20],n;
ll ans=0,t1=0,t2=0,s[N*20];int L[N],R[N];
void dfs(int x){
scanf("%d",&val[x]);
if(!val[x]){
L[x]=++cnt;dfs(L[x]);
R[x]=++cnt;dfs(R[x]);
}
}
void ins(int &rt,int l,int r,int sa){
if(!rt)rt=++totnode;
if(l==r){s[rt]=1;return ;}
int mid=(l+r)>>1;
if(sa<=mid)ins(ls[rt],l,mid,sa);
else ins(rs[rt],mid+1,r,sa);
s[rt]=s[ls[rt]]+s[rs[rt]];
}
int merge(int x,int y){
if(!x)return y;if(!y)return x;
t1+=s[ls[x]]*s[rs[y]];
t2+=s[rs[x]]*s[ls[y]];
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
s[x]=s[ls[x]]+s[rs[x]];
return x;
}
void solve(int x){
if(!x)return ;
solve(L[x]);solve(R[x]);
if(!val[x]){
t1=0;t2=0;
root[x]=merge(root[L[x]],root[R[x]]);
ans+=Min(t1,t2);
}
}
void work()
{
scanf("%d",&n);
dfs(1);
for(int i=1;i<=cnt;i++)
if(val[i])ins(root[i],1,n,val[i]);
solve(1);
printf("%lld\n",ans);
}
int main(){work();return 0;}
bzoj 2212: [Poi2011]Tree Rotations的更多相关文章
- BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )
线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...
- [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】
题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...
- BZOJ 2212 [Poi2011]Tree Rotations(线段树合并)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2212 [题目大意] 给出一棵二叉树,每个叶节点上有一个权值,现在可以任意交换左右儿子, ...
- bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
- 2212: [Poi2011]Tree Rotations
2212: [Poi2011]Tree Rotations https://www.lydsy.com/JudgeOnline/problem.php?id=2212 分析: 线段树合并. 首先对每个 ...
- 【BZOJ】2212: [Poi2011]Tree Rotations
题意 给一棵\(n(1 \le n \le 200000)\)个叶子的二叉树,可以交换每个点的左右子树,要求前序遍历叶子的逆序对最少. 分析 可以发现如果交换非叶结点的左右子树,对子树内的交换无影响, ...
- Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并
题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...
- BZOJ2212: [Poi2011]Tree Rotations
2212: [Poi2011]Tree Rotations Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 391 Solved: 127[Submi ...
随机推荐
- :after/:before使用技巧
伪类:after/:before基本使用 div:before{ content:'';//必须要写,没写则伪元素无效 display:; position:''; ... } //在一个div子元素 ...
- 深入解析OpenCart的代理类proxy
1.什么是代理类 代理类指的是连接远程对象或不可见对象的接口,通常被客户端调用来连接真实的服务对象.更准确的定义参见维基百科 2.代理的作用 作为一个包装类,提供额外的功能 延迟加载 在本文讲到的op ...
- python-map的用法
map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 1.当seq只 ...
- Java 10 的 10 个新特性,将彻底改变你写代码的方式!
Java 9才发布几个月,很多玩意都没整明白,现在Java 10又快要来了.. 这时候我真尼玛想说:线上用的JDK 7 甚至JDK 6,JDK 8 还没用熟,JDK 9 才发布不久不知道啥玩意,JDK ...
- MySql中的varchar长度究竟是字节还是字符
今天在设计表的时候,遇到个小问题,由于不知道未来将要存储的数据有多长(数据是通过第三方http接口提供的,根据sample显示,数据大概是如下:) 也就是6个字符. 我在设计表的时候,有点犹豫,本来准 ...
- __new__ 单例
a.实例化类 实例化一个类时 1. 创建一个对象,调用__new__方法,如果没有会调用父类的__new__方法 2. 调用__init__方法 3. 返回对象的引用 class Dog(object ...
- Tumblr:我们是如何从 PHP 5 升级到 PHP 7 的
Tumblr 团队经常在寻找新的方式来提升网站的性能.这意味着要给访问量大的代码增加缓存,找到更快的 CDN 配置,或者升级基础软件. 最近,通过一次跨团队的努力,我们将全部 web 服务器战舰从 P ...
- vue2与vue1的区别
在前面的学习过程中我们已经对vue1有了一定的了解,下面我们来学习一下vue2,看一下vue1与vue2有什么区别. 区别1: 在vue2中使用v-for指令时它可以添加重复的内容,就像可以添加相同的 ...
- POJ-2349 Arctic Network---MST的第m长的边
题目链接: https://vjudge.net/problem/POJ-2349 题目大意: 要在n个节点之间建立通信网络,其中m个节点可以用卫星直接连接,剩下的节点都要用线路连接,求剩下这些线路中 ...
- [翻译] TensorFlow Programmer's Guide之Frequently Asked Questions(问得频率最多的几个问题)
目录: 特点和兼容性(Features and Compatibility) 建立一个TensorFlow图(Building a TensorFlow graph) 运行一个TensorFlow计算 ...