Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An). The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.



现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。

要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Solution

实现非常巧妙,在线段树合并时可以直接统计

具体思想:

x子树内的逆序对数=左儿子内部的逆序对数+右儿子内部的逆序对数+左右儿子组合的逆序对数

前两项与左右儿子的顺序无关,只需要决策最后一项即可,一路推到根节点即为答案

\(t1+=s[ls[x]]*s[rs[y]]\)

\(t2+=s[rs[x]]*s[ls[y]]\)

在合并时顺便统计两种决策,最后答案加上 \(Min(t1,t2)\)

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=400005;
int root[N],val[N],totnode=0,cnt=1,ls[N*20],rs[N*20],n;
ll ans=0,t1=0,t2=0,s[N*20];int L[N],R[N];
void dfs(int x){
scanf("%d",&val[x]);
if(!val[x]){
L[x]=++cnt;dfs(L[x]);
R[x]=++cnt;dfs(R[x]);
}
}
void ins(int &rt,int l,int r,int sa){
if(!rt)rt=++totnode;
if(l==r){s[rt]=1;return ;}
int mid=(l+r)>>1;
if(sa<=mid)ins(ls[rt],l,mid,sa);
else ins(rs[rt],mid+1,r,sa);
s[rt]=s[ls[rt]]+s[rs[rt]];
}
int merge(int x,int y){
if(!x)return y;if(!y)return x;
t1+=s[ls[x]]*s[rs[y]];
t2+=s[rs[x]]*s[ls[y]];
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
s[x]=s[ls[x]]+s[rs[x]];
return x;
}
void solve(int x){
if(!x)return ;
solve(L[x]);solve(R[x]);
if(!val[x]){
t1=0;t2=0;
root[x]=merge(root[L[x]],root[R[x]]);
ans+=Min(t1,t2);
}
}
void work()
{
scanf("%d",&n);
dfs(1);
for(int i=1;i<=cnt;i++)
if(val[i])ins(root[i],1,n,val[i]);
solve(1);
printf("%lld\n",ans);
} int main(){work();return 0;}

bzoj 2212: [Poi2011]Tree Rotations的更多相关文章

  1. BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )

    线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...

  2. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  3. BZOJ 2212 [Poi2011]Tree Rotations(线段树合并)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2212 [题目大意] 给出一棵二叉树,每个叶节点上有一个权值,现在可以任意交换左右儿子, ...

  4. bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...

  5. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  6. 2212: [Poi2011]Tree Rotations

    2212: [Poi2011]Tree Rotations https://www.lydsy.com/JudgeOnline/problem.php?id=2212 分析: 线段树合并. 首先对每个 ...

  7. 【BZOJ】2212: [Poi2011]Tree Rotations

    题意 给一棵\(n(1 \le n \le 200000)\)个叶子的二叉树,可以交换每个点的左右子树,要求前序遍历叶子的逆序对最少. 分析 可以发现如果交换非叶结点的左右子树,对子树内的交换无影响, ...

  8. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  9. BZOJ2212: [Poi2011]Tree Rotations

    2212: [Poi2011]Tree Rotations Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 391  Solved: 127[Submi ...

随机推荐

  1. linux系统命令学习系列-用户组管理

    先复习一下上节内容: 设置密码命令passwd 用户信息修改命令usermod 用户删除命令userdel 作业:修改user1的用户id为505,家目录到admin,用户组为admin,最后删除us ...

  2. Python之旅.第三章.函数4.01/4.02

    一.三元表达式 #普通的判断大小函数def max2(x,y): if x > y: return x else: return yres=max2(10,11)print(res)x=12y= ...

  3. MySQL关系表查询两个表的数据

    如下,有四张表:游戏类型表,游戏表,点卡和游戏关系表,点卡表 CREATE TABLE `gamesType`( `tId` INT AUTO_INCREMENT NOT NULL PRIMARY K ...

  4. Jenkins 安装、配置与项目新建及构建

    1.Jenkins的安装与配置 1.1 java环境配置 Jenkins基于Java, Linux下安装java只要配置java环境变量即可. 首先,解压java到相应目录,我一般习惯把安装的软件放到 ...

  5. tensorflow安装篇

    安装虚拟机redhat7u4-64 镜像文件在http://www.linuxfly.org/post/659 更换yum 参考https://blog.csdn.net/xiaoyiaoyou/ar ...

  6. 基于dns搭建eureka集群

    eureka集群方案: 1.通常我们部署的eureka节点多于两个,根据实际需求,只需要将相邻节点进行相互注册(eureka节点形成环状),就达到了高可用性集群,任何一个eureka节点挂掉不会受到影 ...

  7. mysql 查询select语句汇总

    数据准备: 创建表: create table students( id int unsigned primary key auto_increment not null, name varchar( ...

  8. Qt自定义控件

    Qt创建自定义控件教程 一.新建Qt设计师控件 二.设置项目名称 三.选择kits 这里取消Debug选项,不需要这个选项都是编译为dll文件直接调用. 删除掉MyControl原有的.h和cpp文件 ...

  9. Struts(十四):通用标签-form表单

    form标签是struts2标签中一个重要标签: 可以生成html标签,使用起来和html的form标签差不多: Strut2的form标签会生成一个table,进行自动布局: 可以对表单提交的值进行 ...

  10. Spring之IOC(一)

    Spring之IOC(一) 对于Spring的基本概念在这里就不在赘述了. Spring的最核心的两部分则是AOP(面向切面编程)和IOC(控制反转).本篇文章主要讲我对IOC的理解. IOC:即In ...