BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP
BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP
题意:Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和。
分析:
如果对每个点进行dfs,时间复杂度为O(n^2)。我们可以由父节点递推出子节点。对于这道题而言,我们先假设根节点为1,用一遍dfs维护出每个子树的大小。
再推出以其他点为根节点的答案,时间复杂度是O(n)的。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
#define LL long long
int head[N],to[N<<1],nxt[N<<1],val[N<<1],cnt,n;
LL dis[N],sum[N],ans,niu[N],All,c[N];
inline void add(int u,int v,int w)
{
to[++cnt]=v;
nxt[cnt]=head[u];
head[u]=cnt;
val[cnt]=w;
}
LL dfs1(int x,int y)
{
LL tot=0;
for(int i=head[x];i;i=nxt[i])
{
int t=to[i];
if(t!=y)
{
LL s=dfs1(t,x);
dis[x]+=dis[t]+1ll*val[i]*s;
tot+=s;
}
}
return niu[x]=c[x]+tot;
}
void dfs2(int x,int y)
{
for(int i=head[x];i;i=nxt[i])
{
int t=to[i];
if(t!=y)
{
sum[t]=sum[x]-1ll*niu[t]*val[i]+(All-niu[t])*1ll*val[i];
dfs2(t,x);
}
}
}
int main()
{
ans=1ll<<60;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&c[i]);
All+=c[i];
}
int x,y,z;
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
dfs1(1,0);
sum[1]=dis[1];
ans=sum[1];
dfs2(1,0);
for(int i=2;i<=n;i++)
{
ans=min(ans,sum[i]);
}
printf("%lld",ans);
}
![](http://8473ae19-6725-415d-a0f6-225c2c400224/icons/logo.png)
BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP的更多相关文章
- 【BZOJ】1827: [Usaco2010 Mar]gather 奶牛大集会(树形dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1827 仔细想想就好了,, 每个点维护两个值,一个是子树的费用,一个是除了子树和自己的费用.都可以用d ...
- bzoj 1827: [Usaco2010 Mar]gather 奶牛大集会【树形dp】
不能用read会TLE!!不能用read会TLE!!不能用read会TLE!! 一开始以为要维护每个点,线段树写了好长(还T了-- 首先dfs一遍,求出点1为集会地点的答案,处理处val[u]为以1为 ...
- BZOJ 1827 [Usaco2010 Mar]gather 奶牛大集会(树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1827 [题目大意] 给出一棵有点权和边权的树, 请确定一个点,使得每个点到这个点的距离 ...
- 【BZOJ1827】[Usaco2010 Mar]gather 奶牛大集会 树形DP
[BZOJ][Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...
- BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP
[Usaco2010 Mar]gather 奶牛大集会 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1 ...
- 【树形DP/搜索】BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会
1827: [Usaco2010 Mar]gather 奶牛大集会 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 793 Solved: 354[Sub ...
- BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会( dp + dfs )
选取任意一个点为root , size[ x ] 表示以 x 为根的子树的奶牛数 , dp一次计算出size[ ] && 选 root 为集会地点的不方便程度 . 考虑集会地点由 x ...
- [Usaco2010 Mar]gather 奶牛大集会
[Usaco2010 Mar]gather 奶牛大集会 题目 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 ...
- 嘴巴题4 「BZOJ1827」[Usaco2010 Mar] gather 奶牛大集会
1827: [Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...
随机推荐
- jquery选择器项目实例分析
首先废话一句,jQuery选择器真心很强大! 在项目中遇到这么一个问题easyui的问题 如图所示,当前页面显示的是"原始报文查询"的页面,当时左侧导航栏却选中的是"重 ...
- EJB 介绍
EJB 编辑 EJB是sun的服务器端组件模型,设计目标与核心应用是部署分布式应用程序.凭借java跨平台的优势,用EJB技术部署的分布式系统可以不限于特定的平台.EJB (Enterprise ...
- java集合及其方法
1.集合框架 我们已经学习过使用数组来批量存储某一类数据: 但是,数组还是存在一些不足,比如长度不可变(建立对象的时候就已经定义好长度): 查找某一个数据时,要依靠索引值来遍历数组进行条件查找,数据量 ...
- Java Elasticsearch新手入门教程
概要: 1.使用Eclipse搭建Elasticsearch详情参考下面链接 2.Java Elasticsearch 配置 3.ElasticSearch Java Api(一) -添加数据创建索引 ...
- Android 资源文件命名与使用
[推荐]资源文件需带模块前缀 [推荐]layout 文件的命名方式 Activity 的 layout 以 module_activity 开头 Fragment 的 layout 以 module_ ...
- python爬虫入门(三)XPATH和BeautifulSoup4
XML和XPATH 用正则处理HTML文档很麻烦,我们可以先将 HTML文件 转换成 XML文档,然后用 XPath 查找 HTML 节点或元素. XML 指可扩展标记语言(EXtensible Ma ...
- Flask入门之SQLAlchemy配置与数据库连接
1. 安装SQLAlchemy pip install flask-sqlalchemy 2. 导入和配置 from flask_sqlalchemy import SQLAlchemy basedi ...
- Java 使用BigDecimal类处理高精度计算
Java在java.math包中提供的API类BigDecimal,用来对超过16位有效位的数进行精确的运算.双精度浮点型变量double可以处理16位有效数,但在实际应用中,可能需要对更大或者更小的 ...
- redux 中间件 --- applyMiddleware 源码解析 + 中间件的实战
前传 中间件的由来 redux的操作的过程,用户操作的时候,我们通过dispatch分发一个action,纯函数reducer检测到该操作,并根据action的type属性,进行相应的运算,返回st ...
- CAS 4.0 单点登录教程
CAS 单点登录指导文档 1.概述 单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所 ...