BZOJ_2303_[Apio2011]方格染色 _并查集
BZOJ_2303_[Apio2011]方格染色 _并查集
Description
Sam和他的妹妹Sara有一个包含n × m个方格的
表格。她们想要将其的每个方格都染成红色或蓝色。
出于个人喜好,他们想要表格中每个2 × 2的方形区
域都包含奇数个(1 个或 3 个)红色方格。例如,右
图是一个合法的表格染色方案(在打印稿中,深色代
表蓝色,浅色代表红色) 。
可是昨天晚上,有人已经给表格中的一些方格染上了颜色!现在Sam和Sara
非常生气。不过,他们想要知道是否可能给剩下的方格染上颜色,使得整个表格
仍然满足她们的要求。如果可能的话,满足他们要求的染色方案数有多少呢?
Input
输入的第一行包含三个整数n, m和k,分别代表表格的行数、列数和已被染
色的方格数目。
之后的k行描述已被染色的方格。其中第 i行包含三个整数xi, yi和ci,分别
代表第 i 个已被染色的方格的行编号、列编号和颜色。ci为 1 表示方格被染成红
色,ci为 0表示方格被染成蓝色。
Output
输出一个整数,表示可能的染色方案数目 W 模 10^9得到的值。(也就是说,如果 W大于等于10^9,则输出 W被10^9除所得的余数)。
对于所有的测试数据,2 ≤ n, m ≤ 106
,0 ≤ k ≤ 10^6
,1 ≤ xi ≤ n,1 ≤ yi ≤ m。
Sample Input
2 2 1
1 2 0
2 3 1
Sample Output
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 2000050
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0;
register char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
int fa[N],n,m,a[N],k,xx[N],yy[N],cc[N];
ll mod=1000000000;
ll qp(ll x,ll y) {ll re=1; for(;y;y>>=1ll,x=x*x%mod) if(y&1ll) re=re*x%mod; return re;}
int find(int x) {
if(fa[x]==x) return x;
int tmp=find(fa[x]);
a[x]^=a[fa[x]];
return fa[x]=tmp;
}
int main() {
n=rd(); m=rd(); k=rd();
register int i;
for(i=1;i<=k;i++) {
xx[i]=rd(); yy[i]=rd(); cc[i]=rd();
}
int col1,flg[2];
flg[0]=flg[1]=0;
ll ans=0;
for(col1=0;col1<2;col1++) {
int cnt=0;
for(i=1;i<=n+m-1;i++) fa[i]=i,a[i]=0;
for(i=1;i<=k;i++) {
int p=col1^cc[i]^(xx[i]%2==0&&yy[i]%2==0);
int x=xx[i],y=yy[i]+n-1;
int dx=find(x),dy=find(y);
if(dx!=dy) {
fa[dx]=dy;
a[dx]=a[y]^a[x]^p;
}else {
if((a[x]^a[y])!=p) {
flg[col1]=1; break;
}
}
}
for(i=1;i<=n+m-1;i++) {
if(fa[i]==i) {
cnt++;
}
}
cnt--;
if(!flg[col1]) {
ans=(ans+qp(2,cnt))%mod;
}
}
printf("%lld\n",ans);
}
BZOJ_2303_[Apio2011]方格染色 _并查集的更多相关文章
- BZOJ2303: [Apio2011]方格染色 【并查集】
Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 个或 3 ...
- bzoj 2303: [Apio2011]方格染色【并查集】
画图可知,每一行的状态转移到下一行只有两种:奇数列不变,偶数列^1:偶数列不变,奇数列^1 所以同一行相邻的变革染色格子要放到同一个并查集里,表示这个联通块里的列是联动的 最后统计下联通块数(不包括第 ...
- BZOJ2303 APIO2011方格染色(并查集)
比较难想到的是将题目中的要求看做异或.那么有ai,j^ai+1,j^ai,j+1^ai+1,j+1=1.瞎化一化可以大胆猜想得到a1,1^a1,j^ai,1^ai,j=(i-1)*(j-1)& ...
- [BZOJ2303][Apio2011]方格染色
[BZOJ2303][Apio2011]方格染色 试题描述 Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好,他们想要表格中每个2 × ...
- BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集
BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集 Description 农夫约翰有N(2≤N≤40000)个农场,标号1到N,M( ...
- BZOJ_1015_[JSOI2008]星球大战_并查集
BZOJ_1015_[JSOI2008]星球大战_并查集 题意:很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的 机遇,一支反抗军摧毁了帝国的超级武器, ...
- BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换
BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置 ...
- BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集+树形DP
BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集. Description 奶牛们遭到了进攻!在他们的共和国里,有N(1 <= N <=50,000)个城市,由M(1 ...
- BZOJ 2303: [Apio2011]方格染色 [并查集 数学!]
题意: $n*m:n,m \le 10^6$的网格,每个$2 \times 2$的方格必须有1个或3个涂成红色,其余涂成蓝色 有一些方格已经有颜色 求方案数 太神了!!!花我三节课 首先想了一下只有两 ...
随机推荐
- cocapods 使用及问题
一.CocoaPods的安装 (1)使用淘宝的Ruby镜像替换官方的ruby源,在终端输入命令 $ gem sources --remove https://rubygems.org/ $ gem s ...
- 别跟我谈EF抵抗并发,敢问你到底会不会用EntityFramework
前言 一直以来写的博文都是比较温婉型的博文,今天这篇博文算是一篇批判性博文,有问题欢迎探讨,如标题,你到底会不会用EntityFramework啊. 你到底会不会用EntityFramework啊 面 ...
- Spring3.x企业应用开发实战-Spring+Hibernat架构分析
1: 持久层设计 采用Spring注解方式省略了大量Hibernate ORM配置文件: BaseDAO减少DAO层代码量,只需要编写非通用型的持久层方法: 持久层提供分页支持: Hibernate ...
- PBCS项目总结
PBCS项目已经成功地Product,终于可以缓解一下紧张的心情,最近连续四五个月紧张地工作,头都要大了.如今比较清闲,是时候总结一下整个项目了.(古人云:成功在于总结嘛) 整个项目是二个人开发的,由 ...
- profile bashrc bash_profile之间的区别和联系
profile bashrc bash_profile之间的区别和联系 博客分类: Linux 执行顺序为:/etc/profile -> (~/.bash_profile | ~/.bas ...
- Hyper Text Transfer Protocol(超文本传输协议)
HTTP简介 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的传送 ...
- Django Channels简明实践
1.安装,如果你已经安装django1.9+,那就不要用官方文档的安装指令了,把-U去掉,直接用: sudo pip install channels 2.自定义的普通Channel的名称只能包含a- ...
- web端创建地图
1>在首部引入标签 <link rel="stylesheet" href="http://cache.amap.com/lbs/static/main111 ...
- 洛谷 P1691 解题报告
P1691 有重复元素的排列问题 题目描述 设\(R={r_1,r_2,--,r_n}\)是要进行排列的\(n\)个元素.其中元素\(r_1,r_2,--,r_n\)可能相同.使设计一个算法,列出\( ...
- python之Flask实现登录功能
网站少不了要和数据库打交道,归根到底都是一些增删改查操作,这里做一个简单的用户登录功能来学习一下Flask如何操作MySQL. 用到的一些知识点:Flask-SQLAlchemy.Flask-Logi ...