3.1 MNIST

本章介绍分类,使用MNIST数据集。该数据集包含七万个手写数字图片。使用Scikit-Learn函数即可下载该数据集:

>>> from sklearn.datasets import fetch_mldata
>>> mnist = fetch_mldata('MNIST original')
>>> X, y = mnist["data"], mnist["target"]
>>> X.shape
(70000, 784)
>>> y.shape
(70000,)

70000张图片,每张图片有784个特征,代表28*28个像素点。每个像素点取值从0(白)到255(黑)。并且前60000张是训练集,后10000张是测试集。

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]   

训练集是按照数字的顺序进行排序的,我们需要将顺序打乱,这可以保证交叉验证的k个部分是一致的(我们不希望某一部分缺少一些数字)。此外,一些算法对训练集的顺序是敏感的,在一行出现很多相似样本时会表现很差。打算训练集就是为了防止这一情况发生。有时候打乱顺序是不明智的——例如,处理的是时序数据(time series data,比如股价、天气),这将在后面章节讨论。

import numpy as np

# 打乱训练集数据顺序
shuffle_index = np.random.permutation(60000)
X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]  

3.2 训练二元分类器(Training a Binary Classifier)

首先将问题简化,训练一个二元分类器。比如只判断图像是5或者不是5。目标向量可通过如下代码创建:

y_train_5 = (y_train == 5) # True for all 5s, False for all other digits.
y_test_5 = (y_test == 5)

作者选择了随机梯度下降(Stochastic Gradient Descent,SGD。梯度下降可参考:梯度下降求解线性回归)分类器,Scikit-Learn’s SGDClassifier。

3.3 性能评估(Performance Measures)

3.3.1 交叉验证计算准确率(Measuring Accuracy Using Cross-Validation)

>>> from sklearn.model_selection import cross_val_score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([ 0.9502 , 0.96565, 0.96495])

得了95%以上的正确率,这似乎很不错了。事实上,我们可以定义一个很弱智的分类器,该分类器把所有图像都识别为不是5,该分类器也能有90%的正确率,因为5的图像只占总数的10%。这就很尴尬了。

因此,对于分类问题来说,准确率通常不是最好的衡量指标,特别是处理倾斜数据集时(skewed datasets,例如一些类别的频率明显高于其它类别)。

3.3.2 混淆矩阵(Confusion Matrix)

>>> from sklearn.model_selection import cross_val_predict
>>> y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
>>> from sklearn.metrics import confusion_matrix
>>> confusion_matrix(y_train_5, y_train_pred)
array([[53272, 1307],
[ 1077, 4344]])

每行代表真实类别,每列代表预测类别。第一行是真实值为非5的图像(负类别,the negative class):53,272个样本正确分类为非5(这被称作true negatives,TN),其余的1,307个被错误分类为5(false positives,FP)。第二行是真实值为5的图像:1,077个图片被错误分类为非5(false negatives),剩下的4,344个被正确分类为5(true positives)。

定义精度(precision)和召回率(recall):

\begin{align*}
precision &= \frac{TP}{TP + FP} \\
recall &= \frac{TP}{TP + FN} \\
\end{align*}

3.2.3 精度和召回率(Precision and Recall)

>>> from sklearn.metrics import precision_score, recall_score
>>> precision_score(y_train_5, y_pred) # == 4344 / (4344 + 1307)
0.76871350203503808
>>> recall_score(y_train_5, y_train_pred) # == 4344 / (4344 + 1077)
0.79136690647482011

现在可以看出,我们的分类是表现的并不好,尽管准确率(accuracy)是95%以上。当分类器认为一个图像是5时,这只有不到77%的情况下是正确的。此外,只检测大了79%的5。

可以将精度和召回率组合成一个被称为$F_1$值的指标,这在比较两个分类器时很方便。$F_1$值是精度和召回率的调和平均数(harmonic mean)。普通的平均数处理所有值都是均等的,调和平均数给予小值更高的权重。只有在精度和召回率都比较高的情况下,才会得到比较高的$F_1$值。

\begin{align*}
F_1 = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = 2 \times \frac{precision \times recall}{precision + recall} = \frac{TP}{TP + \frac{FN + FP}{2}}
\end{align*}

>>> from sklearn.metrics import f1_score
>>> f1_score(y_train_5, y_pred)
0.78468208092485547

精度和召回率相近的分类器,倾向于得到较高的$F_1$值。但有时候我们更关心精度,有时候真正看重的是召回率。

例如,训练一个视频分类器,检测出对儿童安全的视频,这就需要宁缺(低召回率)毋滥(高精度)了。

再比如,你的分类器时检测扒手的,为了一个坏人都不放过(高召回率),即使精度低一些也可以接受。

不幸的是,鱼和熊掌不可兼得:增大召回率造成精度减小,反之亦然。这被称为精度/召回率权衡(precision/recall tradeoff)。

3.2.4 精度/召回率权衡(precision/recall tradeoff)

首先说明一下SGDClassifier是怎么做分类决策的。对于每一个实例,它都会通过决策函数计算一个分支,如果该分值高于阈值, 就预测该实例为正样本,反之预测为负样本。

图3-3.决策阈值和精度/召回率权衡

虽然Scikit-Learn并不允许直接修改阈值,但可以获取用于预测的决策分值(decision scores)。

y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function")
from sklearn.metrics import precision_recall_curve
precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores) def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
plt.xlabel("Threshold")
plt.legend(loc="upper left")
plt.ylim([0, 1]) plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
plt.show()

不同阈值下的精度和召回率

另外一个权衡精度和召回率的方式是直接画出二者图像:

可以看出,在80%召回率附近,精度开始快速下降。可以在这一下降之前对精度和召回率做一权衡,比如选择60%的召回率。当然,这取决于具体的项目。

如果有人说:让我们达到99%的精度。你应该问,基于什么样的召回率?

如果一个分类器召回率特别低,即使它的精度很高,那也没什么用。

3.2.5 ROC

ROC曲线的计算

ROC(receiver operating characteristic)曲线是另一个二分类器的常用工具。它和精度/召回率曲线类似。不同之处在于,ROC曲线画出的是不同FPR(false positive rate)下的TPR(true positive rate,这是召回率的别名)。

from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_train_5, y_scores) def plot_roc_curve(fpr, tpr, label=None):
plt.plot(fpr, tpr, linewidth=2, label=label)
plt.plot([0, 1], [0, 1], 'k--')
plt.axis([0, 1, 0, 1])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate') plot_roc_curve(fpr, tpr)
plt.show()

图3-6.ROC曲线

这也需要进行权衡:召回率(TPR)越高,分类器就会产生越多的错误正样本(FPR)。

分类器好坏的一个度量方式是AUC(area under the curve)。一个完美的分类器,ROC AUC等于1。而一个完全随机的分类器,ROC AUC等于0.5。

由于ROC曲线和精度/召回率(precision/recall,PR)曲线是如此的相似, 或许存在困惑该如何选取。一般来说,如果正样本是稀少的,或者相较于错误的负样本,你更关心错误的正样本,那就应该选择PR曲线。反之,选择ROC曲线。例如,观察一下先前的ROC曲线(包括ROC AUC分值),那可能觉得分类器已经相当好了。但这主要是因为负样本(非5)明显多于正样本(5)。与之相反,PR曲线显示出我们的分类器明显还有提升的空间(曲线可以更靠近右上角)。

3.3 多标签分类(Multilabel Classification)

3.4 Multioutput Classification

  

第三章——分类(Classification)的更多相关文章

  1. Hand on Machine Learning第三章课后作业(1):垃圾邮件分类

    import os import email import email.policy 1. 读取邮件数据 SPAM_PATH = os.path.join( "E:\\3.Study\\机器 ...

  2. CHAPTER 19 Ordering the World 第19章 分类世界

    CHAPTER 19 Ordering the World 第19章 分类世界 Our planet is home to a bewildering variety of plants and an ...

  3. 《Django By Example》第三章 中文 翻译 (个人学习,渣翻)

    书籍出处:https://www.packtpub.com/web-development/django-example 原作者:Antonio Melé (译者注:第三章滚烫出炉,大家请不要吐槽文中 ...

  4. 精通Web Analytics 2.0 (5) 第三章:点击流分析的奇妙世界:指标

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第三章:点击流分析的奇妙世界:指标 新的Web Analytics 2.0心态:搞定它.新的闪亮系列工具:是的.准备好了吗?当然 ...

  5. 统计学习导论:基于R应用——第三章习题

    第三章习题 部分证明题未给出答案 1. 表3.4中,零假设是指三种形式的广告对TV的销量没什么影响.而电视广告和收音机广告的P值小说明,原假设是错的,也就是电视广告和收音机广告均对TV的销量有影响:报 ...

  6. Java基础知识二次学习--第三章 面向对象

    第三章 面向对象   时间:2017年4月24日17:51:37~2017年4月25日13:52:34 章节:03章_01节 03章_02节 视频长度:30:11 + 21:44 内容:面向对象设计思 ...

  7. 第三章 MySQL高级查询(一)

    第三章 MySQL高级查询(一) 一.SQL语言的四个分类 1.       DML(Data Manipulation Language)(数据操作语言):用来插入,修改和删除表中的数据,如INSE ...

  8. c#高级编程第七版 学习笔记 第三章 对象和类型

    第三章 对象和类型 本章的内容: 类和结构的区别 类成员 按值和按引用传送参数 方法重载 构造函数和静态构造函数 只读字段 部分类 静态类 Object类,其他类型都从该类派生而来 3.1 类和结构 ...

  9. CentOS 7.4 初次手记:第三章 CentOS基础了解

    第三章 CentOS基础了解... 36 第一节 语言编码.终端... 36 I 查看语言编码... 36 II Tty?.pts/?. 36 第二节 bash/sh command. 38 I 查找 ...

随机推荐

  1. g++和gcc的相同点和区别

    gcc和g++的区别和联系 gcc和g++都是GNU(一个组织)的编译器. 1.对于.c后缀的文件,gcc把它当做是C程序:g++当做是C++程序: 2.对于.cpp后缀的文件,gcc和g++都会当做 ...

  2. Developing User Interfaces

      Developing a User Interface with ADF Faces Purpose This tutorial covers developing the user interf ...

  3. java开发中几种常见的线程池

    线程池 java.util.concurrent:Class Executors 常用线程池 几种常用的的生成线程池的方法: newCachedThreadPool newFixedThreadPoo ...

  4. MIDle生命周期详解,以及工作原理

    当MIDlet被应用程序管理器成功地初始化之后,就开始展开了它的生命周期.MIDlet的生命周期完全由应用程序管理器控制,也就是说,当MIDlet要从一个状态变成另外一个状态时,应用程序管理器会调用对 ...

  5. $cordovaCamera 插件 上传头像 图片功能

    首先要注入  $cordovaCamera 使用相机拍照 var useCamera = function() { var options = { //这些参数可能要配合着使用,比如选择了source ...

  6. 如何安装Pycharm官方统计代码行插件

    最近一直想统计Pycharm的总计代码行数,找到了官方的统计行数插件,发现效果还不错. 官方代码统计插件指导: https://plugins.jetbrains.com/plugin/4509-st ...

  7. access treeview读取数据表成树并与子窗体联动

    Private Sub Form_Load()Dim i As IntegerDim rst As DAO.RecordsetSet rst = CurrentDb.OpenRecordset(&qu ...

  8. IDEA: 遇到问题Error during artifact deployment. See server log for details解决方法

    1.检查tomcat是否配置正确. 2.检查配置文件是否配置正确,web.xml.等. 3. 4.

  9. Effective Java 第三版——40. 始终使用Override注解

    Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...

  10. java线程之线程同步

    本篇由于涉及多线程操作,所以线程是使用实现Runnable接口来创建的. 在上篇所示线程任务中,我们不难发现,是存在三步操作的: 第一:打印语句: 第二:计算sum=sum-1: 第三:线程休眠. 那 ...