原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot

一个使用序列的神经聊天者使用注意解码器对序列模型进行排序。 这是一个功能齐全的chatbot。

这是基于Google 翻译 Tensorflow 模型 https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/

Chip Huyen 等人的序列到序列模型(2014)

由Chip Huyen创建为作业3的起始代码,CS 20SI 课程:“用于深度学习研究的 TensorFlow ” cs20si.stanford.edu

详细的任务讲义和培训时间的信息可以在 http://web.stanford.edu/class/cs20si/assignments/a3.pdf 找到

A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.

This is based on Google Translate Tensorflow model https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/

Sequence to sequence model by Cho et al.(2014)

Created by Chip Huyen as the starter code for assignment 3, class CS 20SI: "TensorFlow for Deep Learning Research" cs20si.stanford.edu

The detailed assignment handout and information on training time can be found at http://web.stanford.edu/class/cs20si/assignments/a3.pdf

Sample conversation

HUMAN ++++ hi

BOT ++++ hi . what ' s your name ?

HUMAN ++++ i'm chip

BOT ++++ please .

HUMAN ++++ please what?

BOT ++++ i don ' t know what to say .

HUMAN ++++ where are you from?

BOT ++++ california .

HUMAN ++++ do you like california?

BOT ++++ i ' m okay .

HUMAN ++++ i like california a lot

BOT ++++ of what ?

HUMAN ++++ i live here

BOT ++++ and what is it ?

HUMAN ++++ california

BOT ++++ i don ' t know what to say .

HUMAN ++++ i'm a student here

BOT ++++ and get it out of here .

HUMAN ++++ what do you like to do in your free time?

BOT ++++ and what about the gun ?

HUMAN ++++ do you have a gun?

BOT ++++ yes .

HUMAN ++++ you're dangerous!

BOT ++++ i ' m not .

HUMAN ++++ do you go hunting?

BOT ++++ i can do .

HUMAN ++++ what do you hunt?

BOT ++++ virgin .

HUMAN ++++ that's very bad

BOT ++++ and you in love ?

HUMAN ++++ no i'm not

BOT ++++ please - -

HUMAN ++++ okay, i am

BOT ++++ and you are good .

HUMAN ++++ yeah i am good too.

BOT ++++ good good to you .

HUMAN ++++ are you in love?

BOT ++++ i ' m ready .

HUMAN ++++ ready for what?

BOT ++++ for what ?

HUMAN ++++ for what?

BOT ++++ i don ' t know what to say .

HUMAN ++++ tell me

BOT ++++ i can do it .

HUMAN ++++ okay, tell me what you're ready for

BOT ++++ i ' m doing you .

HUMAN ++++ no you're not

BOT ++++ please !

HUMAN ++++ this is a strange conversation

BOT ++++ i don ' t know what to say .

HUMAN ++++ are you a guy?

BOT ++++ of what ?

HUMAN ++++ are you a boy?

BOT ++++ i ' m fine .

HUMAN ++++ are you a man?

BOT ++++ i ' m a little .

HUMAN ++++ what's your name?

BOT ++++ chris -

HUMAN ++++ chris who?

BOT ++++ cornelius .

HUMAN ++++ so i guess you're a guy.

BOT ++++ i am .

HUMAN ++++ okay

BOT ++++ okay ?

HUMAN ++++ do you have a girlfriend?

BOT ++++ i ' m sure .

HUMAN ++++ what's her name?

BOT ++++ let ' s talk about something else .

See output_convo.txt for more sample conversations.

Usage

Step 1: create a data folder in your project directory, download the Cornell Movie-Dialogs Corpus from https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html Unzip it

Step 2: python data.py

This will do all the pre-processing for the Cornell dataset.

Step 3: python chatbot.py --mode [train/chat]

If mode is train, then you train the chatbot. By default, the model will restore the previously trained weights (if there is any) and continue training up on that.

If you want to start training from scratch, please delete all the checkpoints in the checkpoints folder.

If the mode is chat, you'll go into the interaction mode with the bot.

By default, all the conversations you have with the chatbot will be written into the file output_convo.txt in the processed folder. If you run this chatbot, I kindly ask you to send me the output_convo.txt so that I can improve the chatbot. My email is huyenn@stanford.edu

If you find the tutorial helpful, please head over to Anonymous Chatlog Donation to see how you can help us create the first realistic dialogue dataset.

Thank you very much!

A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.的更多相关文章

  1. 【论文阅读】Sequence to Sequence Learning with Neural Network

    Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutske ...

  2. PP: Sequence to sequence learning with neural networks

    From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this p ...

  3. Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...

  4. 深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码- ...

  5. [C5W3] Sequence Models - Sequence models & Attention mechanism

    第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequ ...

  6. ChatGirl is an AI ChatBot based on TensorFlow Seq2Seq Model

    Introduction [Under developing,it is not working well yet.But you can just train,and run it.] ChatGi ...

  7. sequence to sequence模型

    sequence to sequence模型是一类End-to-End的算法框架,也就是从序列到序列的转换模型框架,应用在机器翻译,自动应答等场景. Seq2Seq一般是通过Encoder-Decod ...

  8. Convolutional Sequence to Sequence Learning 论文笔记

    目录 简介 模型结构 Position Embeddings GLU or GRU Convolutional Block Structure Multi-step Attention Normali ...

  9. Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )

    Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...

随机推荐

  1. VS 2008 开发WinCE程序 编译部署速度慢的解决办法

    1.找到以下文件 C:\Windows\Microsoft.NET\Framework\v3.5\Microsoft.CompactFramework.Common.targets 2.用记事本打开该 ...

  2. 阿里云API网关(5)用户指南(调用 API)

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  3. Spark入门(1-3)Spark的重要概念

    1.什么是弹性分布式数据集? Spark提出了RDD(Resilient Distributed Datasets)这么一个全新的概念,RDD弹性分布式数据集是并行.容错的分布式数据结构:可以将RDD ...

  4. Spring MVC拦截器的配置

    最近在用SpringMVC,想用它的拦截器,但是配置了几次都不成功了,最后翻阅了不少文章终于成功了,遂记录于此,以方便他人. 首先引入命名空间: xmlns:mvc="http://www. ...

  5. find文件查找

    一.locate locate基于数据库索引来查找文件,数据库在开机时一段时间对更新,不会实时更新,数据库存放在(/var/lib/mlocate/mlocate.db),可以用updatedb来手动 ...

  6. hdu-2141 Can you find it?---暴力+二分

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2141 题目大意: 给ABC三个数组,给一个X,求是否存在Ai+Bj+Ck = X 思路: 等式转化成 ...

  7. asp.net core 三 Nuget包管理

        参考连接:http://www.cnblogs.com/netcore2/p/7412891.html     这里的说明,基本就是学习了别人的文章,自己做了个备份     asp.net c ...

  8. vue基础特性

    在这里我们主要是讲解一些vue实例的属性和一些基础的指令 vue实例属性: 其实和我们之前所学的对象的属性是相似的东西 vue的基础指令: 对于指令,大家可能之前么有接触过相关的概念,其实大家可以这样 ...

  9. jsonViewer json格式化工具

    以前一直以来都觉得xml个可读性要比json的可读性好,后来使用了JSON Viewer这个小工具之后,发现自己错了.之前认为json的可读性差,完全是因为没有很好的查看工具.JSON Viewer这 ...

  10. DDCTF 2018线上赛writeup

    第一题: d4e8e1f4a0f7e1f3a0e6e1f3f4a1a0d4e8e5a0e6ece1e7a0e9f3baa0c4c4c3d4c6fbb9b2b2e1e2b9b9b7b4e1b4b7e3e ...