Coins HDU - 2844 POJ - 1742
多重背包可行性
当做一般多重背包,二进制优化
#include<cstdio>
#include<cstring>
int n,m,anss;
int a[],c[],f[];
int main()
{
int i,j,t;
scanf("%d%d",&n,&m);
while(n!=||m!=)
{
anss=;
memset(f,,sizeof(f));
for(i=;i<=n;i++)
scanf("%d",&a[i]);
for(i=;i<=n;i++)
scanf("%d",&c[i]);
f[]=;
for(i=;i<=n;i++)
{
t=;
while(c[i]>)
{
if(t>c[i]) t=c[i];
c[i]=c[i]-t;
for(j=m;j>=a[i]*t;j--)
f[j]|=f[j-a[i]*t];
t*=;
}
}
for(i=;i<=m;i++)
if(f[i])
anss++;
printf("%d\n",anss);
scanf("%d%d",&n,&m);
}
return ;
}
二进制优化+bitset压位
#include<cstdio>
#include<cstring>
#include<bitset>
using namespace std;
int n,m,anss;
int a[],c[];
bitset<> f;
int main()
{
int i,j,t;
scanf("%d%d",&n,&m);
while(n!=||m!=)
{
anss=;
f.reset();
for(i=;i<=n;i++)
scanf("%d",&a[i]);
for(i=;i<=n;i++)
scanf("%d",&c[i]);
f[]=;
for(i=;i<=n;i++)
{
t=;
while(c[i]>)
{
if(t>c[i]) t=c[i];
c[i]=c[i]-t;
f|=(f<<(a[i]*t));
t*=;
}
}
for(i=;i<=m;i++)
if(f[i])
anss++;
printf("%d\n",anss);
scanf("%d%d",&n,&m);
}
return ;
}
可以转换成完全背包
http://blog.csdn.net/ac_hell/article/details/51394432
(仅做记录)④对于朴素的方法,这个算法每次只记录一个bool值,损失了不少信息。在这个问题中,不光能够求出是否能得到某个金额,同时还能把得出了此金额时A_i还剩下多少个算出来,这样直接省掉了k那重循环。
我们优化dp的状态:
状态:dp[i][j] : = 用前i种硬币凑成j时第i种硬币最多能剩余多少个( - 1表示配不出来)
转移:
①若dp[i-1][j]>=0,即前i-1种可以配成j,所以根本用不到第i种,所以剩余C_i种 dp[i][j]=C_i
②若j<a[i] || dp[i][j-a[i]]<=0,由于dp[i-1][j]<0,所以要想配成j起码得要有第i种,若j<a[i]则第i种用不到,所以前i种仍配不到j,若dp[i][j-a[i]]<=0,则说明配成j-a[i]时第i种已经无剩余或者甚至无法配成j-a[i],更别说配成j了, dp[i][j]=-1
③其他情况,由于a[i]还有剩,所以dp[i][j]相当于在dp[i][j-a[i]]的基础上多使用了一个a[i],此时 dp[i][j]=dp[i][j-a[i]]-1
最终找出所有>=0的dp[n][i]个数就行了(1<=i<=m)
#include<cstdio>
#include<cstring>
#include<bitset>
using namespace std;
int n,m,anss;
int a[],c[];
int ans[];
int main()
{
int i,j,t;
scanf("%d%d",&n,&m);
while(n!=||m!=)
{
anss=;
memset(ans,-,sizeof(ans));
ans[]=;
for(i=;i<=n;i++)
scanf("%d",&a[i]);
for(i=;i<=n;i++)
scanf("%d",&c[i]);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
if(ans[j]>=)
ans[j]=c[i];
else if(j<a[i]||ans[j-a[i]]<=)
ans[j]=-;
else ans[j]=ans[j-a[i]]-;
for(i=;i<=m;i++)
if(ans[i]>=)
anss++;
printf("%d\n",anss);
scanf("%d%d",&n,&m);
}
return ;
}
另:二进制优化+bitset压位比转成完全背包要快,可能常数优越?
Coins HDU - 2844 POJ - 1742的更多相关文章
- hdu 2844 poj 1742 Coins
hdu 2844 poj 1742 Coins 题目相同,但是时限不同,原本上面的多重背包我初始化为0,f[0] = 1;用位或进行优化,f[i]=1表示可以兑成i,0表示不能. 在poj上运行时间正 ...
- 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)
作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...
- Coins HDU - 2844
Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hibix opened p ...
- Coins(HDU 2844):一个会超时的多重背包
Coins HDU 2844 不能用最基础的多重背包模板:会超时的!!! 之后看了二进制优化了的多重背包. 就是把多重转变成01背包: 具体思路见:http://www.cnblogs.com/tt ...
- HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)
HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...
- [POJ 1742] Coins 【DP】
题目链接:POJ - 1742 题目大意 现有 n 种不同的硬币,每种的面值为 Vi ,数量为 Ni ,问使用这些硬币共能凑出 [1,m] 范围内的多少种面值. 题目分析 使用一种 O(nm) 的 D ...
- poj 1742(好题,楼天城男人八题,混合背包)
Coins Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 33269 Accepted: 11295 Descripti ...
- HDU 3695 / POJ 3987 Computer Virus on Planet Pandora(AC自动机)(2010 Asia Fuzhou Regional Contest)
Description Aliens on planet Pandora also write computer programs like us. Their programs only consi ...
随机推荐
- CEF3研究(一)
一.基本概览 C++ WrapperC++Wrapper(包装类)就是将C结构包装C++类. 这是C/C++API转换层通过translator tool自动产生的. 进程 CEF3用多进程运 ...
- 【Nginx】如何使用http配置
处理http配置项可以分为下面4个步骤: 1)创建数据结构用于存储配置项对应的参数 2)设定配置项在nginx.conf中出现时的限制条件与回调方法 3)实现第2步中的回调方法,或者使用Nginx框架 ...
- 【.NET Core项目实战-统一认证平台】基于jackcao博客使用VSCode开发及感悟One搭建开发环境
原博客系列文章链接:https://www.cnblogs.com/jackcao/ 金焰的世界 感谢博主无私的奉献,感谢博主幼儿班的教学 基于jackcao博客使用VsCode开发及感悟One搭建开 ...
- PHP使用debug_backtrace方法跟踪代码调用
在开发过程中,例如要修改别人开发的代码或调试出问题的代码,需要对代码流程一步步去跟踪,找到出问题的地方进行修改.如果有一个方法可以获取到某段代码是被哪个方法调用,并能一直回溯到最开始调用的地方(包括调 ...
- Python标准库:内置函数complex([real[, imag]])
本函数能够使用參数real + imag*j方式创建一个复数.也能够转换一个字符串的数字为复数:或者转换一个数字为复数.假设第一个參数是字符串,第二个參数不用填写.会解释这个字符串且返回复数.只是,第 ...
- [IT学习]从网上获取pdf制作vce文件
考过IT证书的朋友,都知道什么是vce文件.如果仅仅找到了pdf版本的文件,该如何转为vce文件呢? 具体的步骤如下: 1.到如下网址下载examformatter,http://www.examco ...
- [IT学习]Python如何处理异常特殊字符
欢迎访问www.cnblogs.com/viphhs A byte of Python<输入与输出>一节中有一个处理回文的小例子(io_input.py).作者留了个思考题. 如何将标点去 ...
- 【JSOI 2007】祖玛
[题目链接] 点击打开链接 [算法] f[i][j]表示第i段到第j段,最少需要多少次全部消除 那么,当color[i] = color[j]时 : 若s[i] + s[j] > 2,根据题目中 ...
- AutoIT: 对文件系统的菜单进行操作,有专门的语句WinMenuSelectItem
对文件系统的菜单进行操作,有专门的语句WinMenuSelectItem: Run("notepad.exe") WinWaitActive("[CLASS:Notepa ...
- Windows7下安装golang语言开发环境和revel框架
1.下载先去下载32位或64 golang window 安装包 并安装下载地址:https://www.golangtc.com/download 本人更改了安装地址为 D:\GO\Go 2. go ...