spark 33G表
http://192.168.2.51:4041
http://hadoop1:8088/proxy/application_1512362707596_0006/executors/
Executors
Summary
RDD Blocks | Storage Memory | Disk Used | Cores | Active Tasks | Failed Tasks | Complete Tasks | Total Tasks | Task Time (GC Time) | Input | Shuffle Read | Shuffle Write | Blacklisted | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Active(3) | 54 | 1.4 GB / 1.2 GB | 700.1 MB | 2 | 50 | 0 | 22 | 72 | 6.5 min (2 s) | 0.0 B | 0.0 B | 0.0 B | 0 |
Dead(0) | 0 | 0.0 B / 0.0 B | 0.0 B | 0 | 0 | 0 | 0 | 0 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | 0 |
Total(3) | 54 | 1.4 GB / 1.2 GB | 700.1 MB | 2 | 50 | 0 | 22 | 72 | 6.5 min (2 s) | 0.0 B | 0.0 B | 0.0 B | 0 |
Executors
20
40
60
100
All
entries
Executor ID | Address | Status | RDD Blocks | Storage Memory | Disk Used | Cores | Active Tasks | Failed Tasks | Complete Tasks | Total Tasks | Task Time (GC Time) | Input | Shuffle Read | Shuffle Write | Logs | Thread Dump |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
driver | 192.168.2.51:52491 | Active | 2 | 5.7 KB / 384.1 MB | 0.0 B | 0 | 0 | 0 | 0 | 0 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
2 | hadoop2:33018 | Active | 26 | 729.5 MB / 384.1 MB | 348.1 MB | 1 | 25 | 0 | 11 | 36 | 2.6 min (1 s) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
1 | hadoop1:53695 | Active | 26 | 700.1 MB / 384.1 MB | 352 MB | 1 | 25 | 0 | 11 | 36 | 3.9 min (0.9 s) | 0.0 B | 0.0 B | 0.0 B | Thread Dump |
from pyspark.sql import SparkSession my_spark = SparkSession \
.builder \
.appName("myAppYarn-10g") \
.master('yarn') \
.config("spark.mongodb.input.uri", "mongodb://pyspark_admin:admin123@192.168.2.50/recommendation.article") \
.config("spark.mongodb.output.uri", "mongodb://pyspark_admin:admin123@192.168.2.50/recommendation.article") \
.getOrCreate() db_rows = my_spark.read.format("com.mongodb.spark.sql.DefaultSource").load().collect()
Summary
RDD Blocks | Storage Memory | Disk Used | Cores | Active Tasks | Failed Tasks | Complete Tasks | Total Tasks | Task Time (GC Time) | Input | Shuffle Read | Shuffle Write | Blacklisted | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Active(3) | 31 | 748.4 MB / 1.2 GB | 75.7 MB | 2 | 27 | 0 | 0 | 27 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | 0 |
Dead(2) | 56 | 1.5 GB / 768.2 MB | 790.3 MB | 2 | 0 | 0 | 77 | 77 | 2.7 h (2 s) | 0.0 B | 0.0 B | 0.0 B | 0 |
Total(5) | 87 | 2.3 GB / 1.9 GB | 865.9 MB | 4 | 27 | 0 | 77 | 104 | 2.7 h (2 s) | 0.0 B | 0.0 B | 0.0 B | 0 |
Executors
20
40
60
100
All
entries
Executor ID | Address | Status | RDD Blocks | Storage Memory | Disk Used | Cores | Active Tasks | Failed Tasks | Complete Tasks | Total Tasks | Task Time (GC Time) | Input | Shuffle Read | Shuffle Write | Logs | Thread Dump |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
driver | 192.168.2.51:52491 | Active | 2 | 5.7 KB / 384.1 MB | 0.0 B | 0 | 0 | 0 | 0 | 0 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
4 | hadoop2:34394 | Active | 12 | 315.9 MB / 384.1 MB | 0.0 B | 1 | 11 | 0 | 0 | 11 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
3 | hadoop1:39620 | Active | 17 | 432.5 MB / 384.1 MB | 75.7 MB | 1 | 16 | 0 | 0 | 16 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
2 | hadoop2:33018 | Dead | 27 | 758.7 MB / 384.1 MB | 390.4 MB | 1 | 0 | 0 | 38 | 38 | 1.3 h (1 s) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
1 | hadoop1:53695 | Dead | 29 | 775.9 MB / 384.1 MB | 399.9 MB | 1 | 0 | 0 | 39 | 39 | 1.4 h (0.9 s) | 0.0 B | 0.0 B | 0.0 B | Thread Dump |
Logs for container_1512362707596_0006_02_000002 |
|
Showing 4096 bytes. Click here for full log Manager: Dropping block taskresult_48 from memory |
spark 33G表的更多相关文章
- 基于spark实现表的join操作
1. 自连接 假设存在如下文件: [root@bluejoe0 ~]# cat categories.csv 1,生活用品,0 2,数码用品,1 3,手机,2 4,华为Mate7,3 每一行的格式为: ...
- 利用spark将表中数据拆分
i# coding:utf-8from pyspark.sql import SparkSession import os if __name__ == '__main__': os.environ[ ...
- spark使用Hive表操作
spark Hive表操作 之前很长一段时间是通过hiveServer操作Hive表的,一旦hiveServer宕掉就无法进行操作. 比如说一个修改表分区的操作 一.使用HiveServer的方式 v ...
- Databricks 第6篇:Spark SQL 维护数据库和表
Spark SQL 表的命名方式是db_name.table_name,只有数据库名称和数据表名称.如果没有指定db_name而直接引用table_name,实际上是引用default 数据库下的表. ...
- Spark SQL概念学习系列之如何使用 Spark SQL(六)
val sqlContext = new org.apache.spark.sql.SQLContext(sc) // 在这里引入 sqlContext 下所有的方法就可以直接用 sql 方法进行查询 ...
- spark基础知识介绍2
dataframe以RDD为基础的分布式数据集,与RDD的区别是,带有Schema元数据,即DF所表示的二维表数据集的每一列带有名称和类型,好处:精简代码:提升执行效率:减少数据读取; 如果不配置sp ...
- 新手福利:Apache Spark入门攻略
[编者按]时至今日,Spark已成为大数据领域最火的一个开源项目,具备高性能.易于使用等特性.然而作为一个年轻的开源项目,其使用上存在的挑战亦不可为不大,这里为大家分享SciSpike软件架构师Ash ...
- Spark入门之DataFrame/DataSet
目录 Part I. Gentle Overview of Big Data and Spark Overview 1.基本架构 2.基本概念 3.例子(可跳过) Spark工具箱 1.Dataset ...
- 6.3 使用Spark SQL读写数据库
Spark SQL可以支持Parquet.JSON.Hive等数据源,并且可以通过JDBC连接外部数据源 一.通过JDBC连接数据库 1.准备工作 ubuntu安装mysql教程 在Linux中启动M ...
随机推荐
- 01-封装函数求斐波那契数列第n项
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- Tomcat基础配置(一)
详情请看散尽浮华的tomcat相关配置技巧梳理 本次只用于自己的查看,谢谢作者的谅解. tomcat常用架构:1)nginx+tomcat:即前端放一台nginx,然后通过nginx反向代理到tomc ...
- redis主从原理介绍(三)
博客参考:散尽浮华的Redis主从复制下的工作原理梳理 此作者写的非常好,此处只做挪用,方便自己查看. Redis主从复制的配置十分简单,它可以使从服务器是主服务器的完全拷贝.需要清除Redis主从复 ...
- Spoj-ANTP Mr. Ant & His Problem
Mr. Ant has 3 boxes and the infinite number of marbles. Now he wants to know the number of ways he c ...
- 关于Boot应用中集成Spring Security你必须了解的那些事
Spring Security Spring Security是Spring社区的一个顶级项目,也是Spring Boot官方推荐使用的Security框架.除了常规的Authentication和A ...
- ZOJ 3306 状压dp
转自:http://blog.csdn.net/a497406594/article/details/38442893 Kill the Monsters Time Limit: 7 Seconds ...
- IntelliJ IDEA出现:This file is indented with tabs instead of 4 spaces的问题解决
根据阿里巴巴Java开发手册,不能使用Tab字符,改成4个字符,设置如下: 注意:是不选择! 一定要选择这个:
- 7.Java web—tomcat9部署
1)安装 在此之前要安装 好jdk和jre 下载绿色版 http://tomcat.apache.org/ 解压至:D:\Program Files (x86)\tomcat9 环境变更path添加两 ...
- Object中的wait,notify,notifyAll基本使用(转)
让线程停止运行/睡眠的方法只有两个:Thread.sleep()或者obj.wait() 记住obj.nofity()并不能停止线程运行,因为notify虽然释放了锁,但依然会急促执行完synchro ...
- 用 jQuery实现图片等比例缩放大小
原文:http://www.open-open.com/code/view/1420975773093 <script type="text/javascript"> ...