• Appreciation to our TA, 王毅峰, who designed this task.

问题描述

Give you N numbers a[1]...a[n]

and M numbers b[1]...b[m]

For each b[k], if we can find i,j a[i] + a[j] = b[k] or a[i] = b[k] , we say k is a good number.

And you should only output the number of good numbers.

0 < n, m, a[i], b[j] <= 200000

sample input

3 6

1

3

5

2

4

5

7

8

9

sample output

4

b[1]...b[m] 2,4,5,7,8,9

2 = 1+1

4 = 1+3

5 = 5

8 = 3+5

问题解析

TA的本意是想让我们运用bitset的方法,然而我不太懂,所以投机取巧用了类似于桶排序的方式,之后我会再去研究一下TA的解法的。

My answer

#include <iostream>
using namespace std; int main() {
int tong1[200000] = {0};
int tong2[200000] = {0};
int n, m, temp, sum = 0;
cin >> n >> m;
while (n--) {
cin >> temp;
tong1[temp]++;
}
while (m--) {
cin >> temp;
tong2[temp]++;
}
for (int i = 1; i < 200000; i++) {
int pan = 0;
if (tong2[i] != 0) {
if (tong1[i] != 0) {
pan = 1;
} else {
for (int j = 1; j < i; j++) {
if (tong1[j] != 0 && tong1[i-j] != 0) {
pan = 1;
break;
}
}
}
if (pan == 1)
sum += tong2[i];
}
}
cout << sum << endl;
return 0;
}

TA's answer

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <bitset>
using namespace std;
const int maxn = 50001;
bitset<maxn> goal, now, tmp;
int a[maxn], n, m; void work() {
scanf("%d", &m);
goal.reset();
now.reset();
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
now.set(a[i]);
}
// scanf("%d", &m);
for (int i = 1; i <= m; ++i) {
int k;
scanf("%d", &k);
goal.set(k);
}
sort(a + 1, a + n + 1);
tmp = now;
for (int i = 1; i <= n; ++i) {
tmp = tmp << (a[i] - a[i - 1]);
now = now | tmp;
}
goal = goal & now;
printf("%d\n", goal.count());
} int main() {
while (scanf("%d", &n) != EOF) work();
}

LN : Eden Bitset_3的更多相关文章

  1. LN : Eden Polymorphic And OOP Design Pattern Abstract Factory

    Appreciation to our TA, +7, who designed this task. Client.cpp #include <iostream> #include &l ...

  2. HDU5977 Garden of Eden(树的点分治)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5977 Description When God made the first man, he ...

  3. DSY3163*Eden的新背包问题

    Description "寄没有地址的信,这样的情绪有种距离,你放着谁的歌曲,是怎样的心心静,能不能说给我听."失忆的Eden总想努力地回忆起过去,然而总是只能清晰地记得那种思念的 ...

  4. Ubuntu杂记——链接ln的使用:创建和删除符号链接

    原文链接:http://blog.csdn.net/janpylx/article/details/6761910 一 . 使用方式 ln [option] source_file dist_file ...

  5. linux命令大全之ln命令详解(创建软链接和硬链接)

    ln是linux中又一个非常重要命令,它的功能是为某一个文件在另外一个位置建立一个同步的链接,分为软链接.硬链接.软链接相当于windows的快捷方式,下面是使用方法和示例   ln是linux中又一 ...

  6. hdu-5977 Garden of Eden(树分治)

    题目链接: Garden of Eden Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  7. bzoj 3163: [Heoi2013]Eden的新背包问题

    Description "寄没有地址的信,这样的情绪有种距离,你放着谁的歌曲,是怎样的心心静,能不能说给我听."失忆的Eden总想努力地回忆起过去,然而总是只能清晰地记得那种思念的 ...

  8. liunx ln -s 软连接

    项目中遇到不同项目中上传图片共享问题 解决方法就用到了 liunx的ln -s 的软连接, 用法: liunx ln -s 文件路径 实现共享思路:不同的目录都软连接到同一个目录

  9. [CentOS] 指定命令别名:Alias & 软链接生成命令 ln -s

    参考:CentOS里alias命令详解 每天一个linux命令(35):ln 命令 1. Alias命令 功能描述:我们在进行系统的管理工作一定会有一些我们经常固定使用,但又很长的命令.那我们可以给这 ...

随机推荐

  1. 谈谈控制器技术SpringMVC与struts2

    SpringMVC与struts2区别 作为表现层中控制器技术的两大掌门人,有哪些不同神功? 首先struts2是作为类级别的拦截,一个类对应一个request上下文.springmvc是作为方法级别 ...

  2. paramiko错误信息:Paramiko error: size mismatch in put

    在使用paramiko的put往远处服务器上传资源的时候,出现类似下面的错误信息 The code in paramiko's sftp_client.py:putfo() reads at the ...

  3. [教程] NETGEAR R7800 路由器TFTP刷机方法(适用于.img格式固件各种刷)

    本教程是我参照R7800的OP/LEDE固件交流群内文件做的教程,可以说是完善.补充吧. 本帖适用于:① 原厂固件刷原厂固件:② 原厂固件刷第三方固件(.img格式):③ 第三方固件刷回原厂固件(.i ...

  4. centos7 禁止 root ssh login

    CentOS 7 默认容许任何帐号透过 ssh 登入,包括 root 和一般帐号,为了不让 root 帐号被黑客暴力入侵,我们必须禁止 root 帐号的 ssh 功能,事实上 root 也没有必要 s ...

  5. 绑定服务时什么时候调用onRebind

    Serivce中onRebind被调用的时机非常特别,想知道什么时候onRebind被调用,能够接以下的次序来学习.最后自然就明确了! 1. 首先要知道.同一个服务既可能被启动也能够被绑定; 2. S ...

  6. [AngularJS] Store the entry url and redirect to entry url after Logged in

    For example when a outside application need to visit your app address: https://www.example.com/#/lob ...

  7. C# .NET Visual Studio VS2008如何显示行号

    工具-选项,然后勾选"显示所有设置",然后在文本编辑器下面找到所有语言,勾选"行号"即可.  

  8. Android 4.2 project导入 5.0 SDK Eclipse 开发环境出现的问题总结

    Android 4.2 project导入 5.0 SDK Eclipse 开发环境出现的问题总结 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循&qu ...

  9. 【Hibernate】Hibernate的多表查询

    在<[Hibernate]Hibernate的聚类查询.分组查询.排序与时间之差>(点击打开链接)一文中已经讲述过怎样利用HQL语句代替SQL语句.进行聚类查询.分组查询.排序与时间之差的 ...

  10. Nginx + FastCgi + Spawn-fcgi + C 架构的server环境搭建

    1.Nginx 1.1.安装 Nginx 的中文维基 http://wiki.codemongers.com/NginxChs 下载 Nginx 0.6.26(开发版)(请下载最新版本号) tar z ...