Leetcode 300.最长上升子序列
最长上升子序列
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:
- 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
- 你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
直接用DP求解,算法如下:时间复杂度为O(N^2)
①最优子问题
设lis[i] 表示索引为 [0...i] 上的数组上的 最长递增子序列。初始时,lis[i]=1,注意,在DP中,初始值是很重要的,它是整个算法运行正确的关键。而初始值 则可以 通过 画一个小的示例来 确定。
当 arr[i] > arr[j],lis[i] = max{lis[j]}+1 ;其中,j 的取值范围为:0,1...i-1
当 arr[i] < arr[j],lis[i] = max{lis[j]} ;其中,j 的取值范围为:0,1...i-1
class Solution {
public int lengthOfLIS(int[] nums) {
int length=nums.length;
if(nums==null || length==0) return 0;
int[] dp=new int[length];
for(int i=0;i<length;i++){
dp[i]=1;
}
for(int i=1;i<length;i++){
for(int j=0;j<i;j++){
if(nums[i]>nums[j]&&dp[j]+1>dp[i]){
dp[i]=dp[j]+1;
}
}
}
int max=dp[0];
for(int i=1;i<length;i++){
if(max<dp[i]){
max=dp[i];
}
}
return max;
}
}
Leetcode 300.最长上升子序列的更多相关文章
- Java实现 LeetCode 300 最长上升子序列
300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,10 ...
- leetcode 300最长上升子序列
用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...
- Leetcode——300. 最长上升子序列
题目描述:题目链接 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101], ...
- [LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)
https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fan ...
- LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)
题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...
- LeetCode 300——最长上升子序列
1. 题目 2. 解答 2.1. 动态规划 我们定义状态 state[i] 表示以 nums[i] 为结尾元素的最长上升子序列的长度,那么状态转移方程为: \[state[i] = max(state ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- Leetcode题目300.最长上升子序列(动态规划-中等)
题目描述: 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度 ...
- 【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))
算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删 ...
随机推荐
- linux查找命令(find)
linux查找命令(find) 命令格式: find [目录] [选项] [选项的条件] 选项: -name:文件名称查找 -size:文件的大小来查找 -perm:文件的权限来查找 ①根据文件的名称 ...
- JAVA常用设计模式(静态化调用和实例化调用的区别,编辑可见 )
用newInstance()与用new是区别的,区别在于创建对象的方式不一样,前者是使用类加载机制,后者是创建一个新类,且newInstance()只能调用无参构造函数. 最大的区别在于内存.静态方法 ...
- [转].NET MVC 分页以及增删查改
本文转自:http://blog.csdn.net/sust2012/article/details/30761867 . 数据库操作,DAL 层: using System; using Syste ...
- 如何使用 Java 生成二维码
步骤 下载jar包(QRCode.jar) maven项目手动引入jar包 编写实体类实现二维码的生成 controller调用 下载jar包(QRCode.jar) 下载网址如下: QRCode生成 ...
- JVM内存各个区域分工简单介绍
JVM内存各个区域简单介绍: 程序计数器:程序计数器是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器. 在使用多线程时,为了线程切换后能恢复到正确的执行位置,每条线程都需要有个独立 ...
- ArcGIS Desktop新建postgresql版sde(10.4.1)的连接
假设连接到的sde数据库是pg数据库,其他参数包括: ip:10.0.0.8 数据库:sde1 用户:sde 密码:sde 打开catalog,新建数据库连接 按如下输入数据库连接参数 红框1是数据库 ...
- iOS 随笔 允许所有不安全网络访问项目
允许任意请求访问app App Transport Security Settings -> Allow Arbitrary Loads YES
- Hibernate中的inverse和cascade属性
Hibernate中的inverse和cascade属性 inverse的值有两种,"true"和"false".inverse="false&quo ...
- QTableWidget表头样式
转载请注明出处:http://www.cnblogs.com/dachen408/p/7742680.html QTableView { background-color: rgba(255, 255 ...
- mysql中的 enum (枚举)
mysql enum是指字段的类型 表示枚举类型 mysql> alter table student add adders enum("sichuang","sh ...