描述

JAVAMAN is visiting Dream City and he sees a yard of gold coin trees. There are n trees in the yard. Let's call them tree 1, tree 2 ...and tree n. At the first day, each tree i has ai coins on it (i=1, 2, 3...n). Surprisingly, each tree i can grow bi new coins each day if it is not cut down. From the first day, JAVAMAN can choose to cut down one tree each day to get all the coins on it. Since he can stay in the Dream City for at most m days, he can cut down at most m trees in all and if he decides not to cut one day, he cannot cut any trees later. (In other words, he can only cut down trees for consecutive m or less days from the first day!)

Given nmai and bi (i=1, 2, 3...n), calculate the maximum number of gold coins JAVAMAN can get.

输入

There are multiple test cases. The first line of input contains an integer T (T <= 200) indicates the number of test cases. Then T test cases follow.

Each test case contains 3 lines: The first line of each test case contains 2 positive integers n and m (0 < m <= n <= 250) separated by a space. The second line of each test case contains n positive integers separated by a space, indicating ai. (0 < ai <= 100, i=1, 2, 3...n) The third line of each test case also contains n positive integers separated by a space, indicating bi. (0 < bi <= 100, i=1, 2, 3...n)

输出

For each test case, output the result in a single line.

样例输入

2
2 1
10 10
1 1
2 2
8 10
2 3

样例输出

10
21

提示

Test case 1: JAVAMAN just cut tree 1 to get 10 gold coins at the first day.
Test case 2: JAVAMAN cut tree 1 at the first day and tree 2 at the second day to get 8 + 10 + 3 = 21 gold coins in all.
题目大意:
输入n,m分别代表n个数,和能砍m棵树,接下来n个数字ai代表第i棵树原有的金币,再接下来n个数字bi代表第i棵树每天增长的硬币。
将树按b升序排序,然后循环更新dp值即可。
#include <bits/stdc++.h>
using namespace std;
struct p
{
int a,b;
}x[];
int dp[];
bool cmp(p a,p b)
{
if(a.b!=b.b) return a.b<b.b;
return a.a<b.a;
}
int main()
{
ios::sync_with_stdio(false);
int T;
cin>>T;
while(T--)
{
memset(dp,,sizeof dp);
int n,m;
cin>>n>>m;
for(int i=;i<n;i++)
cin>>x[i].a;
for(int i=;i<n;i++)
cin>>x[i].b;
sort(x,x+n,cmp);
for(int i=;i<n;i++)
for(int j=m;j>;j--)
dp[j]=max(dp[j],dp[j-]+x[i].a+x[i].b*(j-));
cout<<dp[m]<<'\n';
}
return ;
}

Dream City(线性DP)的更多相关文章

  1. ZOJ 3211 Dream City(线性DP)

    Dream City Time Limit: 1 Second      Memory Limit: 32768 KB JAVAMAN is visiting Dream City and he se ...

  2. ZOJ 3211 Dream City(DP)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3374 题目大意:JAVAMAN 到梦幻城市旅游见到了黄金树,黄金树上 ...

  3. POJ-2346 Lucky tickets(线性DP)

    Lucky tickets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3298 Accepted: 2174 Descrip ...

  4. Hills——一道转移方程很“有趣”的线性DP

    题目描述 Welcome to Innopolis city. Throughout the whole year, Innopolis citizens suffer from everlastin ...

  5. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  6. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  7. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  8. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  9. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

随机推荐

  1. php中三元运算符用法

    代码如下: <?php $handle=fopen("../good/html/1.txt", "r"); while(!feof($handle)) / ...

  2. vue 模拟后台数据(加载本地json文件)调试

    首先创建一个本地json文件,放在项目中如下 { "runRedLight":{ "CurrentPage": 1, "TotalPages" ...

  3. ubuntu 16.0.4安装MySQL5.7

    系统版本 root@sishen:~# uname -a Linux sishen 4.10.0-35-generic #39~16.04.1-Ubuntu SMP Wed Sep 13 09:02: ...

  4. Windows API函数大全二

    4. API之打印函数 AbortDoc 取消一份文档的打印 AbortPrinter 删除与一台打印机关联在一起的缓冲文件 AddForm 为打印机的表单列表添加一个新表单 AddJob 用于获取一 ...

  5. 微信小程序 逻辑层

    1. 注册程序小程序APP在小程序的根目录下有一个app.js文件.有App(Object),App() 函数用来注册一个小程序.接受一个 Object 参数,其内便是小程序的生命周期.App() 必 ...

  6. Kali部署openvas初探与实践

    openvas安装 1.我用的清华大学的源,所以我把/etc/apt/source.list中下入如下源地址 #清华大学deb http://mirrors.tuna.tsinghua.edu.cn/ ...

  7. EMAC IP 核

    在有线连接的世界里,以太网(Ethernet)无所不在.以太网具有各种速度模式.接口方式.以及灵活的配置方式.现在的以太网卡都是10/100/1000Mbps自适应网卡.以太网的物理层(PHY)通常使 ...

  8. SQL Server时间类型datetime

    SQL Server时间类型datetime 兼容ADO的COleDateTime. SQL datetime 日期和时间数据,可表示1753.1.1 至 9999.12.31的时间,精度为1/300 ...

  9. 洛谷 P1507 NASA的食物计划

    题目背景 NASA(美国航空航天局)因为航天飞机的隔热瓦等其他安 全技术问题一直大伤脑筋,因此在各方压力下终止了航天 飞机的历史,但是此类事情会不会在以后发生,谁也无法 保证,在遇到这类航天问题时,解 ...

  10. SEO 第十章

    SEO第十章 本次课目标: 1.  站外优化方案计划 2.  常见的SEO作弊手段(黑帽) 3.  百度站长平台的使用 4.  网站流量提升和转化率提升 一.站外优化方案计划 友情链接 权重相当.行业 ...