Sentiment Analysis

Two approaches

  • SimpleRNNCell

    • single layer

    • multi-layers

  • RNNCell

Single layer

import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.') batchsz = 128 # the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train,
y_train), (x_test,
y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train,
maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test,
maxlen=max_review_len) db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train),
tf.reduce_min(y_train))
print('x_test shape:', x_test.shape) class MyRNN(keras.Model):
def __init__(self, units):
super(MyRNN, self).__init__() # [b, 64]
self.state0 = [tf.zeros([batchsz, units])]
self.state1 = [tf.zeros([batchsz, units])] # transform text to embedding representation
# [b, 80] => [b, 80, 100]
self.embedding = layers.Embedding(total_words,
embedding_len,
input_length=max_review_len) # [b, 80, 100] , h_dim: 64
# RNN: cell1 ,cell2, cell3
# SimpleRNN,units=64表示100个向量转成64个初始的状态
self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5)
self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5) # fc, [b, 80, 100] => [b, 64] => [b, 1]
self.outlayer = layers.Dense(1) def call(self, inputs, training=None):
"""
net(x) net(x, training=True) :train mode
net(x, training=False): test
:param inputs: [b, 80]
:param training:
:return:
"""
# [b, 80]
x = inputs
# embedding: [b, 80] => [b, 80, 100]
x = self.embedding(x)
# rnn cell compute
# [b, 80, 100] => [b, 64]
state0 = self.state0
state1 = self.state1
for word in tf.unstack(x, axis=1): # word: [b, 100]
# h1 = x*wxh+h0*whh
# out0: [b, 64]
out0, state0 = self.rnn_cell0(word, state0, training)
# out1: [b, 64]
out1, state1 = self.rnn_cell1(out0, state1, training) # out: [b, 64] => [b, 1]
x = self.outlayer(out1)
# p(y is pos|x)
prob = tf.sigmoid(x) return prob def main():
units = 64
epochs = 4 model = MyRNN(units)
model.compile(optimizer=keras.optimizers.Adam(0.001),
loss=tf.losses.BinaryCrossentropy(),
metrics=['accuracy'])
model.fit(db_train, epochs=epochs, validation_data=db_test) model.evaluate(db_test) if __name__ == '__main__':
main()

Multi-layers

import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.') batchsz = 128 # the most frequest words
total_words = 10000 # 编码10000个单词
max_review_len = 80 # 句子长度80
embedding_len = 100
(x_train,
y_train), (x_test,
y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train,
maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test,
maxlen=max_review_len) db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
# drop_remainder,丢弃最后一个大小不合适的batch
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train),
tf.reduce_min(y_train))
print('x_test shape:', x_test.shape) class MyRNN(keras.Model):
def __init__(self, units):
super(MyRNN, self).__init__() # transform text to embedding representation
# [b, 80] => [b, 80, 100] # embedding_len=100表示一个单词为100的向量
self.embedding = layers.Embedding(total_words,
embedding_len,
input_length=max_review_len) # [b, 80, 100] , h_dim: 64
self.rnn = keras.Sequential([
layers.SimpleRNN(units,
dropout=0.5,
return_sequences=True,
unroll=True),
layers.SimpleRNN(units, dropout=0.5, unroll=True)
]) # fc, [b, 80, 100] => [b, 64] => [b, 1] # 得到分类结果
self.outlayer = layers.Dense(1) def call(self, inputs, training=None):
"""
net(x) net(x, training=True) :train mode
net(x, training=False): test
:param inputs: [b, 80]
:param training: 计算过程是train还是test
:return:
"""
# [b, 80]
x = inputs
# embedding: [b, 80] => [b, 80, 100]
x = self.embedding(x)
# rnn cell compute
# x: [b, 80, 100] => [b, 64]
x = self.rnn(x) # out: [b, 64] => [b, 1]
x = self.outlayer(x)
# p(y is pos|x)
prob = tf.sigmoid(x) return prob def main():
units = 64
epochs = 4 model = MyRNN(units)
model.compile(optimizer=keras.optimizers.Adam(0.001),
loss=tf.losses.BinaryCrossentropy(),
metrics=['accuracy'])
model.fit(db_train, epochs=epochs, validation_data=db_test) model.evaluate(db_test) if __name__ == '__main__':
main()

RNN与情感分类问题实战-加载IMDB数据集的更多相关文章

  1. pytorch 加载mnist数据集报错not gzip file

    利用pytorch加载mnist数据集的代码如下 import torchvision import torchvision.transforms as transforms from torch.u ...

  2. torchvision的理解和学习 加载常用数据集,对主流模型的调用.md

    torchvision的理解和学习 加载常用数据集,对主流模型的调用 https://blog.csdn.net/tsq292978891/article/details/79403617 加载常用数 ...

  3. 科学计算三维可视化---TVTK管线与数据加载(数据集)

    一:数据集 三维可视化的第一步是选用合适的数据结构来表示数据,TVTK提供了多种表示不同种类数据的数据集 (一)数据集--ImageData >>> from tvtk.api im ...

  4. Tensorflow之快速加载MNIST数据集

    from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf def myprint(v): p ...

  5. Pytorch文本分类(imdb数据集),含DataLoader数据加载,最优模型保存

    用pytorch进行文本分类,数据集为keras内置的imdb影评数据(二分类),代码包含六个部分(详见代码) 使用环境: pytorch:1.1.0 cuda:10.0 gpu:RTX2070 (1 ...

  6. [DeeplearningAI笔记]序列模型2.9情感分类

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.9 Sentiment classification 情感分类 情感分类任务简单来说是看一段文本,然后分辨这个人是否喜欢 ...

  7. JVM学习二:JVM之类加载器之加载分析

    前面一遍,我们对类的加载有了一个整体的认识,而这一节我们细节分析一下类加载器的第一步,即:加载. 一.概念 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区 ...

  8. UIButton 加载网络图片

    以后就可以 用这个分类   UIButton轻松加载网络图片了, UIButton+WebCache.h #import <UIKit/UIKit.h> @interface UIButt ...

  9. Pytorch加载并可视化FashionMNIST指定层(Udacity)

    加载并可视化FashionMNIST 在这个notebook中,我们要加载并查看 Fashion-MNIST 数据库中的图像. 任何分类问题的第一步,都是查看你正在使用的数据集.这样你可以了解有关图像 ...

随机推荐

  1. SGU 176 Flow construction【有上下界最小流】

    正好考到了所以翻一些题来做--猛然发现搞了半个月的网络流却没做两道上下界(不过这种题好像是比较少233) 首先建立超级源汇ss,tt,没限制的边照常连,对于有限制的边(u,v,mn,mx),连接(u, ...

  2. jquery的validate的用法

    //引入js文件 //jquery 文件 <script src="__PUBLIC__/static/wap/js/jquery.min.js?v=2.1.4">&l ...

  3. 文件系统访问控制ACL设置

    1.传统Linux文件系统权限的问题 传统Linux文件系统有三类用户:文件属主-u,组用户-g,其它用户-o,以及三种访问权限:读-r,写-w,执行或目录进入-x,但很多时候并不能满足对文件访问的细 ...

  4. 乐搏讲自动化测试-Python适用公司类型(6)

    相信小伙伴们都知道,随着软件测试行业的发展和进步自动化测试已经成为必然.在竞争日益激烈的市场环境中也是你升职加薪的利器. 所以,小编决定从今天起!将要系统.连续.高质量的持续更新「整套自动化测试」文章 ...

  5. CocoaPods 升级出现问题 (一)

    升级了cocoapods 然后出现了这个问题 , 一上午时间各种FQ啊 ,终于吃完饭后找到原因了 ,OK 开工

  6. Xors on Segments Codeforces - 620F

    http://codeforces.com/problemset/problem/620/F 此题是莫队,但是不能用一般的莫队做,因为是最优化问题,没有办法在删除元素的时候维护答案. 这题的方法(好像 ...

  7. Python variable 作用域和初始化

    Python 根据LEGB rule在不同的namespace中找变量 在def的函数中对global 变量做修改还是不推荐的,应该将其作为参数传入函数 try: do_something() cnt ...

  8. jmeter(五)集合点

    集合点: 简单来理解一下,虽然我们的“性能测试”理解为“多用户并发测试”,但真正的并发是不存在的,为了更真实的实现并发这感念,我们可以在需要压力的地方设置集合点,每到输入用户名和密码登录时,所有的虚拟 ...

  9. 转】R利剑NoSQL系列文章 之 Cassandra

    原博文出自于: http://blog.fens.me/category/%E6%95%B0%E6%8D%AE%E5%BA%93/page/3/ 感谢! R利剑NoSQL系列文章 之 Cassandr ...

  10. Hadoop YARN学习之组件功能简述(3)

    Hadoop YARN学习之组件功能简述(3) 1. YARN的三大组件功能简述: ResourceManager(RM)是集群的资源的仲裁者, 它有两部分:一个可插拔的调度器和一个Applicati ...