Subsetting

There are a number of operators that can be used to extract subsets of R objects.

[ always returns an object of the same class as the original; can be used to select more than one

element (there is one exception)

[[ is used to extract elements of a list or a data frame; it can only be used to extract a single

element and the class of the returned object will not necessarily be a list or data frame

$ is used to extract elements of a list or data frame by name; semantics are similar to that of [[.

> x <- c("a", "b", "c", "c", "d", "a")

> x[1]

[1] "a"

> x[2]

[1] "b"

> x[1:4]

[1] "a" "b" "c" "c"

> x[x > "a"]

[1] "b" "c" "c" "d"

> u <- x > "a"

> u

[1] FALSE TRUE TRUE TRUE TRUE FALSE

> x[u]

[1] "b" "c" "c" "d"

Subsetting Lists

> x <- list(foo = 1:4, bar = 0.6)

> x[1]

$foo

[1] 1 2 3 4

> x[[1]]

[1] 1 2 3 4

> x$bar

[1] 0.6

> x[["bar"]]

[1] 0.6

> x["bar"]

$bar

[1] 0.6

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> x[c(1, 3)]

$foo

[1] 1 2 3 4

$baz

[1] "hello"

The [[ operator can be used with computed indices; $ can only be used with literal names.

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> name <- "foo"

> x[[name]] ## computed index for ‘foo’

[1] 1 2 3 4

> x$name ## element ‘name’ doesn’t exist!

NULL

> x$foo

[1] 1 2 3 4 ## element ‘foo’ does exist

Subsetting Nested Elements of a List

The [[ can take an integer sequence

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))

> x[[c(1, 3)]]

[1] 14

> x[[1]][[3]]

[1] 14

> x[[c(2, 1)]]

[1] 3.14

Subsetting a Matrix

Matrices can be subsetted in the usual way with (i,j) type indices.

> x <- matrix(1:6, 2, 3)

> x[1, 2]

[1] 3

> x[2, 1]

[1] 2

Indices can also be missing.

> x[1, ]

[1] 1 3 5

> x[, 2]

[1] 3 4

By default, when a single element of a matrix is retrieved, it is returned as a vector of length 1 rather than a 1 × 1 matrix. This behavior can be turned off by setting drop = FALSE.

> x <- matrix(1:6, 2, 3)

> x[1, 2]

[1] 3

> x[1, 2, drop = FALSE]

 [,1]

[1,] 3

Similarly, subsetting a single column or a single row will give you a vector, not a matrix (by default).

> x <- matrix(1:6, 2, 3)

> x[1, ]

[1] 1 3 5

> x[1, , drop = FALSE]

 [,1] [,2] [,3]

[1,] 1 3 5

Partial Matching

Partial matching of names is allowed with [[ and $.

> x <- list(aardvark = 1:5)

> x$a

[1] 1 2 3 4 5

> x[["a"]]

NULL

> x[["a", exact = FALSE]]

[1] 1 2 3 4 5

Removing NA Values

A common task is to remove missing values (NAs).

> x <- c(1, 2, NA, 4, NA, 5)

> bad <- is.na(x)

> x[!bad]

[1] 1 2 4 5

What if there are multiple things and you want to take the subset with no missing values?

> x <- c(1, 2, NA, 4, NA, 5)

> y <- c("a", "b", NA, "d", NA, "f")

> good <- complete.cases(x, y)

> good

[1] TRUE TRUE FALSE TRUE FALSE TRUE

> x[good]

[1] 1 2 4 5

> y[good]

[1] "a" "b" "d" "f"

 

> airquality[1:6, ]

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

> good <- complete.cases(airquality)

> airquality[good, ][1:6, ]

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

7 23 299 8.6 65 5 7

R Programming week1-Subsetting的更多相关文章

  1. Coursera系列-R Programming第二周

    博客总目录,记录学习R与数据分析的一切:http://www.cnblogs.com/weibaar/p/4507801.html  --- 好久没发博客 且容我大吼一句 终于做完这周R Progra ...

  2. Coursera系列-R Programming第三周-词法作用域

    完成R Programming第三周 这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范[词法作用域 Lexical Scopping]的功效.但是作业里给出的函数有点绕口,花费了我们蛮多心 ...

  3. 让reddit/r/programming炸锅的一个帖子,还是挺有意思的

    这是原帖 http://www.reddit.com/r/programming/comments/358tnp/five_programming_problems_every_software_en ...

  4. [R] [Johns Hopkins] R Programming 作業 Week 2 - Air Pollution

    Introduction For this first programming assignment you will write three functions that are meant to ...

  5. R Programming week 3-Loop functions

    Looping on the Command Line Writing for, while loops is useful when programming but not particularly ...

  6. R programming, In ks.test(x, y) : p-value will be approximate in the presence of ties

    Warning message: In ks.test(x, y) : p-value will be approximate in the presence of ties   The warnin ...

  7. [R] [Johns Hopkins] R Programming -- week 3

    library(datasets) head(airquality) #按月分組 s <- split(airquality, airquality$Month) str(s) summary( ...

  8. [R] [Johns Hopkins] R Programming -- week 4

    #Generating normal distribution (Pseudo) random number x<-rnorm(10) x x2<-rnorm(10,2,1) x2 set ...

  9. R Programming week 3-Debugging

    Something’s Wrong! Indications that something’s not right message: A generic notification/diagnostic ...

随机推荐

  1. HDFS集中式缓存管理(Centralized Cache Management)

    Hadoop从2.3.0版本号開始支持HDFS缓存机制,HDFS同意用户将一部分文件夹或文件缓存在HDFS其中.NameNode会通知拥有相应块的DataNodes将其缓存在DataNode的内存其中 ...

  2. 65*24=1560<2175 对数据的统计支撑决策假设 历史数据正确的情况下,去安排今后的任务

    没有达到目标,原因不是时间投入不够,而是不用数据决策,不用数据调度定时脚本 [数据源情况统计]----># 近30天,日生效coin数目SELECT COUNT(DISTINCT coin) A ...

  3. HTML5中meta属性

    meta属性在HTML中占据了很重要的位置.如:针对搜索引擎的SEO,文档的字符编码,设置刷新缓存等.虽然一些网页可能没有使用meta,但是作为正规军,我们还是有必要了解一些meta的属性,并且能够熟 ...

  4. POJ - 3041 Asteroids(最小点覆盖数)

    1.有一个n*n的矩阵,在矩阵上有k个行星,用武器射击一次可以消灭一行或者一列的行星,求消灭所有的行星的最少射击次数. 2.最小点覆盖数 = 最大匹配数 主要在于转化:看图: 这样,在建成的二分图中, ...

  5. UITabBarController简单介绍

    一.简单介绍 UITabBarController和UINavigationController类似,UITabBarController也可以轻松地管理多个控制器,轻松完成控制器之间的切换,典型的例 ...

  6. 博弈论中的SG函数

    SG函数的定义: g(x) = mex ( sg(y) |y是x的后继结点 ) 其中mex(x)(x是一个自然是集合)函数是x关于自然数集合的补集中的最小值,比如x={0,1,2,4,6} 则mex( ...

  7. bzoj1046 [HAOI2007]上升序列——LIS

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1046 倒序求最长下降子序列,则得到了每个点开始的最长上升子序列: 然后贪心输出即可. 代码如 ...

  8. 淘淘商城项目_同步索引库问题分析 + ActiveMQ介绍/安装/使用 + ActiveMQ整合spring + 使用ActiveMQ实现添加商品后同步索引库_匠心笔记

    文章目录 1.同步索引库问题分析 2.ActiveM的介绍 2.1.什么是ActiveMQ 2.2.ActiveMQ的消息形式 3.ActiveMQ的安装 3.1.安装环境 3.2.安装步骤 4.Ac ...

  9. jquery操作ID带有变量的节点

    var indexNode='content'+index;$("#"+indexNode).show( 'puff', { }, 500, callback );

  10. Orchard 相关

    Orchard中文网: http://www.orchardch.com/ 起飞网: http://www.qeefee.com/category/orchard