A domino is a flat, thumbsized tile, the face of which is divided into two squares, each left blank or bearing from one to six dots. There is a row of dominoes laid out on a table: 

The number of dots in the top line is 6+1+1+1=9 and the number of dots in the bottom line is 1+5+3+2=11. The gap between the top line and the bottom line is 2. The gap is the absolute value of difference between two sums.

Each domino can be turned by 180 degrees keeping its face always upwards.

What is the smallest number of turns needed to minimise the gap between the top line and the bottom line?

For the figure above it is sufficient to turn the last domino in the row in order to decrease the gap to 0. In this case the answer is 1. 
Write a program that: computes the smallest number of turns needed to minimise the gap between the top line and the bottom line.

Input

The first line of the input contains an integer n, 1 <= n <= 1000. This is the number of dominoes laid out on the table.

Each of the next n lines contains two integers a, b separated by a single space, 0 <= a, b <= 6. The integers a and b written in the line i + 1 of the input file, 1 <= i <= 1000, are the numbers of dots on the i-th domino in the row, respectively, in the top line and in the bottom one.

Output

Output the smallest number of turns needed to minimise the gap between the top line and the bottom line.

Sample Input

4
6 1
1 5
1 3
1 2

Sample Output

1

题目大意:给成一组多米诺牌,每个多米诺牌由上面和下面两组数组成,现要求可以翻动
颠倒上下,使得多米诺上边的点数和减去下边的点数和的绝对值最小。 题解:dp,背包,翻转或者不翻转,然后f[i][j],j表示反转后差为j的最小次数。
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define ll long long
#define inf 1000000007 using namespace std; int n;
int a[][];
int f[][]; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&a[i][],&a[i][]);
memset(f,,sizeof(f));
f[][]=;
for(int i=;i<n;i++)
for(int j=;j<=;j++)
if(f[i][j]<inf)
{
int x1=a[i+][],x2=a[i+][];
f[i+][j+x1-x2]=min(f[i][j],f[i+][j+x1-x2]);
f[i+][j+x2-x1]=min(f[i][j]+,f[i+][j+x2-x1]);
}
for(int i=;i<=;i++)
if(f[n][+i]<inf||f[n][-i]<inf)
{
printf("%d\n",min(f[n][+i],f[n][-i]));
break;
}
}

												

poj1717 Dominoes (背包)的更多相关文章

  1. POJ1717 Dominoes[背包DP]

    Dominoes Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6731   Accepted: 2234 Descript ...

  2. 【USACO 3.1】Stamps (完全背包)

    题意:给你n种价值不同的邮票,最大的不超过10000元,一次最多贴k张,求1到多少都能被表示出来?n≤50,k≤200. 题解:dp[i]表示i元最少可以用几张邮票表示,那么对于价值a的邮票,可以推出 ...

  3. HDU 3535 AreYouBusy (混合背包)

    题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...

  4. HDU2159 二维完全背包

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. CF2.D 并查集+背包

    D. Arpa's weak amphitheater and Mehrdad's valuable Hoses time limit per test 1 second memory limit p ...

  6. UVALive 4870 Roller Coaster --01背包

    题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F ,     D -= K 问在D小于等于一定限度的时 ...

  7. 洛谷P1782 旅行商的背包[多重背包]

    题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能 ...

  8. HDU3466 Proud Merchants[背包DP 条件限制]

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  9. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

随机推荐

  1. (三)maven之一个基本的pom.xml

    一个基本项目的pom.xml文件,通常会有以下三部分: 一.项目坐标,信息描述等. <modelVersion>4.0.0</modelVersion> <groupId ...

  2. python打飞机pro版

    # -*- coding: utf-8 -*- import pygame from sys import exit import random pygame.init() screen = pyga ...

  3. vue2.0动画

    相对于vue1.0来说,vue2.0的动画变化还是挺大的, 在1.0中,直接在元素中加 transition ,后面跟上名字. 而在vue2.0中,需要把设置动画的元素.路由放在<transit ...

  4. Python list 列表和tuple元组

    1 list是一种Python的数据类型--列表 list是一种有序的集合,可以进行增删改查 >>>name=[aa,bb,cc] >>>name ['aa','b ...

  5. 快学UiAutomator新建第一个测试工程

    1.打开Eclipse 2.新建一个java项目,包 3.增加build path,加载需要的库文件jar包 4.新建测试类,继承UIAutomatorTestCase 5.编写测试用例,方法名必须t ...

  6. glove 安装错误

    https://stackoverflow.com/questions/44921611/error-installing-glove-python-link-exe-failed-with-exit ...

  7. Bootstrap历练实例:禁用的按钮

    <!DOCTYPE html><html><head> <meta http-equiv="Content-Type" content=& ...

  8. viewDidLoad、loadView

    一.loadView永远不要主动调用这个函数.view controller会在view的property被请求并且当前view值为nil时调用这个函数.如果你手动创建view,你应该重载这个函数,且 ...

  9. (34)zabbix Queue队列

    概述 queue(队列)显示监控项等待刷新的时间,可以看到每种agent类型刷新时间,通过queue可以更好的体现出监控的一个指标.正常情况下,是一片绿色. 如果出现过多红色,那么需要留意一下.我们也 ...

  10. 【编码】【转发】enca 转换编码

    enca用法如下: enca -L zh_CN file 检查文件的编码 enca -L zh_CN -x UTF-8 file 将文件编码转换为"UTF-8"编码 enca -L ...