Codeforces Round #360 (Div. 2)——C. NP-Hard Problem(BFS染色判二分图)
2 seconds
256 megabytes
standard input
standard output
Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.
Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e. or
(or both).
Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.
They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it's impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).
The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.
Each of the next m lines contains a pair of integers ui and vi (1 ≤ ui, vi ≤ n), denoting an undirected edge between ui and vi. It's guaranteed the graph won't contain any self-loops or multiple edges.
If it's impossible to split the graph between Pari and Arya as they expect, print "-1" (without quotes).
If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains kintegers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.
4 2
1 2
2 3
1
2
2
1 3
3 3
1 2
2 3
1 3
-1
In the first sample, you can give the vertex number 2 to Arya and vertices numbered 1 and 3 to Pari and keep vertex number 4 for yourself (or give it someone, if you wish).
In the second sample, there is no way to satisfy both Pari and Arya.
原来二分图判断是用BFS或DFS染色法,还是对BFS比较熟悉就用BFS了。然而一开始只随便对1这个点进行BFS,并没有考虑到1也许本身就是被舍弃的点,而且数据会出现多个连通分量并存。看了大牛的博客才知道要对每一个节点所在的图都进行判断。难怪一直WA在第15组数据……,也算是学习了二分图的判断方法了
代码:
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define MM(x,y) memset(x,y,sizeof(x))
typedef long long LL;
const double PI=acos(-1.0);
const int N=100010; vector<int>E[N];
int color[N]; void init()
{
for (int i=0; i<N; i++)
E[i].clear();
MM(color,0);
}
bool bfs(int s)
{
queue<int>Q;
int i;
Q.push(s);
color[s]=1;
while (!Q.empty())
{
int now=Q.front();
Q.pop();
int SZ=E[now].size();
for (i=0; i<SZ; ++i)
{
int v=E[now][i];
if(!color[v])
{
color[v]=(color[now]==1?2:1);
Q.push(v);
}
else if(color[v]&&color[v]==color[now])
return false;
}
}
return true;
}
int main(void)
{
int n,m,i,j,k,a,b,c,flag;
while (~scanf("%d%d",&n,&m))
{
init();
flag=1;
for (i=0; i<m; i++)
{
scanf("%d%d",&a,&b);
E[a].push_back(b);
E[b].push_back(a);
}
for (i=1; i<=n; i++)
{
if(!color[i]&&E[i].size()>0)
{
if(!bfs(i))
flag=0;
}
}
if(!flag)
puts("-1");
else
{
int cnta=0,cntb=0;
vector<int>va,vb;
for (i=1; i<=n; i++)
{
if(color[i]==1)
{
va.push_back(i);
cnta++;
}
else if(color[i]==2)
{
vb.push_back(i);
cntb++;
}
}
printf("%d\n",cnta);
for (i=0; i<cnta; i++)
printf("%d%s",va[i],i==cnta-1?"\n":" "); printf("%d\n",cntb);
for (i=0; i<cntb; i++)
printf("%d%s",vb[i],i==cntb-1?"\n":" ");
}
}
return 0;
}
Codeforces Round #360 (Div. 2)——C. NP-Hard Problem(BFS染色判二分图)的更多相关文章
- Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集
D. Dividing Kingdom II 题目连接: http://www.codeforces.com/contest/687/problem/D Description Long time a ...
- Codeforces Round #360 (Div. 2) D. Remainders Game 数学
D. Remainders Game 题目连接: http://www.codeforces.com/contest/688/problem/D Description Today Pari and ...
- Codeforces Round #360 (Div. 2) C. NP-Hard Problem 水题
C. NP-Hard Problem 题目连接: http://www.codeforces.com/contest/688/problem/C Description Recently, Pari ...
- Codeforces Round #360 (Div. 2) B. Lovely Palindromes 水题
B. Lovely Palindromes 题目连接: http://www.codeforces.com/contest/688/problem/B Description Pari has a f ...
- Codeforces Round #360 (Div. 2) A. Opponents 水题
A. Opponents 题目连接: http://www.codeforces.com/contest/688/problem/A Description Arya has n opponents ...
- Codeforces Round #360 (Div. 1)A (二分图&dfs染色)
题目链接:http://codeforces.com/problemset/problem/687/A 题意:给出一个n个点m条边的图,分别将每条边连接的两个点放到两个集合中,输出两个集合中的点,若不 ...
- Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环
D. Dividing Kingdom II Long time ago, there was a great kingdom and it was being ruled by The Grea ...
- Codeforces Round #360 (Div. 2) E. The Values You Can Make DP
E. The Values You Can Make Pari wants to buy an expensive chocolate from Arya. She has n coins, ...
- Codeforces Round #360 (Div. 2) C D E
每次AB秒出 到了C难度陡然上升...翻译都弄不懂... C 给出一张图 找出两个点的覆盖集(覆盖集是指这图中每条边都有至少一个点在这个点集里面) 并且两个点集没有交集 英文很难看懂...就是二分图的 ...
- Codeforces Round #360 (Div. 2) E. The Values You Can Make 01背包
题目链接: 题目 E. The Values You Can Make time limit per test:2 seconds memory limit per test:256 megabyte ...
随机推荐
- sqlite的应用
对于Android平台来说,系统内置了丰富的API来供开发人员操作SQLite,我们可以轻松的完成对数据的存取.下面就向大家介绍一下SQLite常用的操作方法.本篇文章主要用到SQLiteDataba ...
- 洛谷 P2362 围栏木桩
题目描述 某农场有一个由按编号排列的n根木桩构成的首尾不相连的围栏.现要在这个围栏中选取一些木桩,按照原有的编号次序排列之后,这些木桩高度成一个升序序列.所谓的升序序列就是序列中的任何一个数都不小于它 ...
- 使用Cordova将您的前端JavaScript应用打包成手机原生应用
假设我用JavaScript和HTML开发了一个前端应用,我想把该应用打包成能直接在手机上安装和运行(不通过浏览器)的原生应用,例如像下面这样.对应用的用户来说,他们得到的用户体验和真正的用Andro ...
- httpmodule初识
.net的请求流程: HttpRequest-->inetinfo.exe->ASPNET_ISAPI.DLL-->Http Pipeline-->ASPNET_WP.EXE- ...
- python小括号( )与中括号 [ ]
在python中小括号()表示的是tuple元组数据类型,元组是一种不可变序列. >>> a = (1,2,3) >>> a (1, 2, 3) >>& ...
- github更换仓库
1.找到.git目录 2.打开config文件 3.修改仓库地址 4.重新提交 git push --all origin 这样就替我们的项目换仓啦!!!^_^ 分类: git 参考资料: h ...
- hibernate3缓存(hibernate)
一级缓存:当应用程序调用Session 的save() .update() .savaeOrUpdate() .get() 或load() ,以及调用查询接口的list() .iterate() 或f ...
- docker系列之网络配置
docker 网络配置 docker 安装后, 会自动在系统做一个网桥配置 docker0 . 其容器都会分配到此网桥配置下的独立, 私有 IP 地址. 如果你要自己配置桥接, 也可以把 docker ...
- docker系列之file基本操作
dockerfile基础操作 Dockerfile 是记录了镜像是如何被构建出来的配置文件, 可以被 docker 直接执行以创建一个镜像. 它的样子: FROM ubuntu:14.04 MAINT ...
- gpio/外设/控制器
1.项目中所有的外设pad都是通过GPIO与控制器相连的.比如FSHC<=>gpio<=>flash 2.gpio类似多个 mux 集合. 3.对于与gpio相连的pad具体结 ...