C. NP-Hard Problem
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.

Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e.  or  (or both).

Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.

They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it's impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.

Each of the next m lines contains a pair of integers ui and vi (1  ≤  ui,  vi  ≤  n), denoting an undirected edge between ui and vi. It's guaranteed the graph won't contain any self-loops or multiple edges.

Output

If it's impossible to split the graph between Pari and Arya as they expect, print "-1" (without quotes).

If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains kintegers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.

Examples
input
4 2
1 2
2 3
output
1
2
2
1 3
input
3 3
1 2
2 3
1 3
output
-1
Note

In the first sample, you can give the vertex number 2 to Arya and vertices numbered 1 and 3 to Pari and keep vertex number 4 for yourself (or give it someone, if you wish).

In the second sample, there is no way to satisfy both Pari and Arya.

原来二分图判断是用BFS或DFS染色法,还是对BFS比较熟悉就用BFS了。然而一开始只随便对1这个点进行BFS,并没有考虑到1也许本身就是被舍弃的点,而且数据会出现多个连通分量并存。看了大牛的博客才知道要对每一个节点所在的图都进行判断。难怪一直WA在第15组数据……,也算是学习了二分图的判断方法了

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define MM(x,y) memset(x,y,sizeof(x))
typedef long long LL;
const double PI=acos(-1.0);
const int N=100010; vector<int>E[N];
int color[N]; void init()
{
for (int i=0; i<N; i++)
E[i].clear();
MM(color,0);
}
bool bfs(int s)
{
queue<int>Q;
int i;
Q.push(s);
color[s]=1;
while (!Q.empty())
{
int now=Q.front();
Q.pop();
int SZ=E[now].size();
for (i=0; i<SZ; ++i)
{
int v=E[now][i];
if(!color[v])
{
color[v]=(color[now]==1?2:1);
Q.push(v);
}
else if(color[v]&&color[v]==color[now])
return false;
}
}
return true;
}
int main(void)
{
int n,m,i,j,k,a,b,c,flag;
while (~scanf("%d%d",&n,&m))
{
init();
flag=1;
for (i=0; i<m; i++)
{
scanf("%d%d",&a,&b);
E[a].push_back(b);
E[b].push_back(a);
}
for (i=1; i<=n; i++)
{
if(!color[i]&&E[i].size()>0)
{
if(!bfs(i))
flag=0;
}
}
if(!flag)
puts("-1");
else
{
int cnta=0,cntb=0;
vector<int>va,vb;
for (i=1; i<=n; i++)
{
if(color[i]==1)
{
va.push_back(i);
cnta++;
}
else if(color[i]==2)
{
vb.push_back(i);
cntb++;
}
}
printf("%d\n",cnta);
for (i=0; i<cnta; i++)
printf("%d%s",va[i],i==cnta-1?"\n":" "); printf("%d\n",cntb);
for (i=0; i<cntb; i++)
printf("%d%s",vb[i],i==cntb-1?"\n":" ");
}
}
return 0;
}

Codeforces Round #360 (Div. 2)——C. NP-Hard Problem(BFS染色判二分图)的更多相关文章

  1. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集

    D. Dividing Kingdom II 题目连接: http://www.codeforces.com/contest/687/problem/D Description Long time a ...

  2. Codeforces Round #360 (Div. 2) D. Remainders Game 数学

    D. Remainders Game 题目连接: http://www.codeforces.com/contest/688/problem/D Description Today Pari and ...

  3. Codeforces Round #360 (Div. 2) C. NP-Hard Problem 水题

    C. NP-Hard Problem 题目连接: http://www.codeforces.com/contest/688/problem/C Description Recently, Pari ...

  4. Codeforces Round #360 (Div. 2) B. Lovely Palindromes 水题

    B. Lovely Palindromes 题目连接: http://www.codeforces.com/contest/688/problem/B Description Pari has a f ...

  5. Codeforces Round #360 (Div. 2) A. Opponents 水题

    A. Opponents 题目连接: http://www.codeforces.com/contest/688/problem/A Description Arya has n opponents ...

  6. Codeforces Round #360 (Div. 1)A (二分图&dfs染色)

    题目链接:http://codeforces.com/problemset/problem/687/A 题意:给出一个n个点m条边的图,分别将每条边连接的两个点放到两个集合中,输出两个集合中的点,若不 ...

  7. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环

    D. Dividing Kingdom II   Long time ago, there was a great kingdom and it was being ruled by The Grea ...

  8. Codeforces Round #360 (Div. 2) E. The Values You Can Make DP

    E. The Values You Can Make     Pari wants to buy an expensive chocolate from Arya. She has n coins, ...

  9. Codeforces Round #360 (Div. 2) C D E

    每次AB秒出 到了C难度陡然上升...翻译都弄不懂... C 给出一张图 找出两个点的覆盖集(覆盖集是指这图中每条边都有至少一个点在这个点集里面) 并且两个点集没有交集 英文很难看懂...就是二分图的 ...

  10. Codeforces Round #360 (Div. 2) E. The Values You Can Make 01背包

    题目链接: 题目 E. The Values You Can Make time limit per test:2 seconds memory limit per test:256 megabyte ...

随机推荐

  1. 【数据库-MySQL on Azure】如何使用 MySQL EntityFramework 组件处理 MYSQL PaaS DB

    MySQL Database on Azure 是 Azure 平台上推出的 MySQL 云数据库服务,通过全面兼容 MySQL 协议,为用户提供了一个全托管的性能稳定.可快速部署.高可用.高安全性的 ...

  2. js获取元素的页面坐标

    一.DOM中各种宽度.高度 二.DOM中的坐标系 JS获取div元素的宽度 offsetWidth=width+padding-left+padding-right+border-left+borde ...

  3. 查询sqlserver数据库,表占用数据大小

     if exists(select 1 from tempdb..sysobjects where id=object_id('tempdb..#tabName') and xtype='u')dro ...

  4. Servlet和JSP之有关Servlet和JSP的梳理(二)

    JSP JSP页面本质上是一个Servlet,JSP页面在JSP容器中运行,一个Servlet容器通常也是JSP容器. 当一个JSP页面第一次被请求时,Servlet/JSP容器主要做一下两件事情: ...

  5. codeforce Gym 100203I I WIN (网络流)

    把'I'拆成容量为1一条边,一个入点一个出点,入点和相邻的'W'连一条容量为1的边,出点和相邻的'N'连一条容量为1,所有的'W'和源点连一条容量为1边,所有的'N'和汇点连一条容量为1的边,表示只能 ...

  6. Android(java)学习笔记147:自定义SmartImageView(继承自ImageView,扩展功能为自动获取网络路径图片)

    1. 有时候Android系统配置的UI控件,不能满足我们的需求,Android开发做到了一定程度,多少都会用到自定义控件,一方面是更加灵活,另一方面在大数据量的情况下自定义控件的效率比写布局文件更高 ...

  7. build.sbt的定义格式

    一个简单的build.sbt文件内容如下: name := "hello" // 项目名称 organization := "xxx.xxx.xxx" // 组 ...

  8. 三、绘图和可视化之matplotlib

    #matplotlib简单绘图之plot import matplotlib.pyplot as plt a=[1,2,3] b=[10,2,30] plt.plot(a)#纵坐标为a的值,横坐标为a ...

  9. 国庆集训 || Wannafly Day1

    网址:https://www.nowcoder.com/acm/contest/201#question A.签到 手速石头剪刀布 #include <cstdio> #include & ...

  10. UEditor中多图上传的bug

    多图上传 预览:支持浏览器版本  IE8以上 在线管理:由于存在bug,显示不了 ueditor-1.1.1.jar解压后找到FileManager 1.修改com.baidu.ueditor.hun ...