POJ 1286 Necklace of Beads ——Burnside
【题目分析】
题目大意:一个环有n个点,共染三种颜色。问 在旋转和对称的情况下有多少种本质不同的方案数。
Burnside直接做。
【代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define F(i,j,k) for (int i=j;i<=k;++i) ll f[25],pow[30];
int n; int gcd(int a,int b)
{return b==0?a:gcd(b,a%b);} int main()
{
f[0]=0;pow[0]=1;
F(i,1,23) pow[i]=pow[i-1]*3;
F(z,1,23)
{
F(i,0,z-1) f[z]+=pow[gcd(i,z)];
if (z&1) f[z]+=z*pow[z/2+1];
else f[z]+=z/2*pow[z/2],f[z]+=z/2*pow[z/2+1];
f[z]/=2*z;
}
while (scanf("%d",&n)&&n>=0)
printf("%lld\n",f[n]);
}
POJ 1286 Necklace of Beads ——Burnside的更多相关文章
- 数学计数原理(Pólya):POJ 1286 Necklace of Beads
Necklace of Beads Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7763 Accepted: 3247 ...
- POJ 1286 Necklace of Beads(项链的珠子)
Necklace of Beads Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7874 Accepted: 3290 ...
- poj 1286 Necklace of Beads & poj 2409 Let it Bead(初涉polya定理)
http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...
- POJ 1286 Necklace of Beads(Polya简单应用)
Necklace of Beads 大意:3种颜色的珠子,n个串在一起,旋转变换跟反转变换假设同样就算是同一种,问会有多少种不同的组合. 思路:正规学Polya的第一道题,在楠神的带领下,理解的还算挺 ...
- poj 1286 Necklace of Beads poj 2409 Let it Bead HDU 3923 Invoker <组合数学>
链接:http://poj.org/problem?id=1286 http://poj.org/problem?id=2409 #include <cstdio> #include &l ...
- poj 1286 Necklace of Beads【polya定理+burnside引理】
和poj 2409差不多,就是k变成3了,详见 还有不一样的地方是记得特判n==0的情况不然会RE #include<iostream> #include<cstdio> us ...
- POJ 1286 Necklace of Beads(Polya原理)
Description Beads of red, blue or green colors are connected together into a circular necklace of n ...
- poj 2409 Let it Bead && poj 1286 Necklace of Beads(Polya定理)
题目:http://poj.org/problem?id=2409 题意:用k种不同的颜色给长度为n的项链染色 网上大神的题解: 1.旋转置换:一个有n个旋转置换,依次为旋转0,1,2,```n-1. ...
- poj 1286 Necklace of Beads (polya(旋转+翻转)+模板)
Description Beads of red, blue or green colors are connected together into a circular necklace of ...
随机推荐
- 快速排序的一种Java实现
快速排序是笔试和面试中很常见的一个考点.快速排序是冒泡排序的升级版,时间复杂度比冒泡排序要小得多.除此之外,快速排序是不稳定的,冒泡排序是稳定的. 1.原理 (1)在数据集之中,选择一个元素作为&qu ...
- 使用 Azure 创建存储和检索文件
本指南将以循序渐进的方式帮助您使用 Azure 将文件存储到云中.我们将逐一介绍如何创建存储账户.创建容器.上传文件.检索文件和删除文件.在本教程中完成的所有操作均符合 1 元试用条件. 本指南将以循 ...
- (转)SpringMVC学习(四)——Spring、MyBatis和SpringMVC的整合
http://blog.csdn.net/yerenyuan_pku/article/details/72231763 之前我整合了Spring和MyBatis这两个框架,不会的可以看我的文章MyBa ...
- 机器学习之-奇异值分解(SVD)原理详解及推导
转载 http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充 ...
- ios 使用NSRegularExpression解析正则表达式
初始化一个 NSRegularExpression 对象 注:_str是要匹配的字符串 NSRegularExpression *regex = [NSRegularExpression regu ...
- caffe修改需要的东西 6:40
https://blog.csdn.net/zhaishengfu/article/details/51971768?locationNum=3&fps=1
- 爬虫_python3_requests_2
pip install requests 进行简单的操作 发送一个get请求 # 发送请求 import requests response = requests.get('http://httpbi ...
- 阿里短信接口使用(JAVA版)
近期项目需要使用短信接口,对比下选择了阿里的短信接口 以下为开发笔记: maven pom.xml中引入: <dependency> <groupId>com.aliyun&l ...
- CS193p Lecture 11 - UITableView, iPad
UITableView 的 dataSource 和 delegate dataSource 是一种协议,由 UITableView 实现,将 Model 的数据给到 UITableView: del ...
- CS193p Lecture 8 - Protocols, Blocks and Animation
一.协议(Protocols) 1. 声明协议 @protocol Foo <Xyzzy, NSObject> // ... @optinal // @required //... @en ...