题目描述

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。

输入输出格式

输入格式:

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。

输出格式:

只有一行为k个子矩阵分值之和最大为多少。

输入输出样例

输入样例#1:

3 2 2
1 -3
2 3
-2 3
输出样例#1: 
  9
 

Solution

这道题作为一道省选DP来讲的,偏简单了一些.
但是还是有一点思维难度的.
拿到先看 m , m 只有 1 和 2 ?
所以先打了一下 m=1 的情况.
 

状态定义:

f[i][l] 表示到第 i 个点 用掉 l 个矩形的最大值.

转移方程:

for(pre 1--> i-1)

f[i][l]=max(f[i-1][l],f[pre][l-1]+sum[pre-->i]); //sum 表示pre到i的元素值的和.

于是 m=1 便有30 pts.

然后再想 m=2 , 由 m=1 拓展?

于是 定义状态 : f[ i ][ j ][ l ] 表示上面一列到了 i 下面一列到了 j 已选择 l 个矩阵的最大值.

想了想,m=2有一下几种情况:

1. 这个点我不做拓展  --> max( f[ i-1 ][ j-1 ][ l ] , f[ i-1 ][ j-1 ][ l ] ,f[ i ][ j-1 ][ l ] ) ;

2. 由上一列扩展一个小的 s*1 面积的

3. 由上一列扩展一个小的 s*1 面积的

4. 两列都作扩展 ,来一个 s*2 面积的

于是乎,这道题的 DP 也自然就出来了.

代码

#include<bits/stdc++.h>
using namespace std;
int n,m,k;
int f1[][],f[][][];
int c[][],sum[][]; void solve()
{
for(int i=;i<=n;i++)
for(int l=;l<=k;l++)
{
f1[i][l]=f1[i-][l];
for(int j=;j<i;j++)
f1[i][l]=max(f1[j][l-]+sum[][i]-sum[][j],f1[i][l]);
}
cout<<f1[n][k];
return;
} int main()
{
cin>>n>>m>>k;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&c[j][i]),sum[j][i]=sum[j][i-]+c[j][i];
if(m==) {solve();return ;} for(int l=;l<=k;l++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
f[i][j][l]=max(f[i-][j][l],f[i][j-][l]);
for(int pre=;pre<i;pre++) f[i][j][l]=max(f[i][j][l],f[pre][j][l-]+sum[][i]-sum[][pre]);
for(int pre=;pre<j;pre++) f[i][j][l]=max(f[i][j][l],f[i][pre][l-]+sum[][j]-sum[][pre]);
if(i==j)
for(int pre=;pre<i;pre++)
f[i][j][l]=max(f[i][j][l],f[pre][pre][l-]+sum[][i]-sum[][pre]+sum[][j]-sum[][pre]);
}
cout<<f[n][n][k]; return ;
}

[SCOI2005]最大子矩阵 (动态规划)的更多相关文章

  1. BZOJ1084 [SCOI2005]最大子矩阵 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...

  2. BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划

    传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...

  3. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  4. 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1325  Solved: 670[Submit][Stat ...

  5. bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...

  6. 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)

    1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...

  7. BZOJ(6) 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3566  Solved: 1785[Submit][Sta ...

  8. [Luogu 2331] [SCOI2005]最大子矩阵

    [Luogu 2331] [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 ...

  9. 洛谷P2331 [SCOI2005]最大子矩阵 DP

    P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...

随机推荐

  1. Nginx常用命令介绍

    #安装nginx准备工作yum install gcyum -y install pcre-develyum install -y zlib-devel #编译安装./configuremake &a ...

  2. 最完整的台达PLC培训教程(沈阳工大)学习笔记1

    1) 可编程控制器的应用1 开关量逻辑控制:电动机启动与停止2 运动控制:对步进电动机或伺服电动机的单轴或多轴系统实现位置控制3 过程控制:对温度.压力.流量等连续变化的模拟量进行闭环控制4 数据处理 ...

  3. 国庆集训 || Wannafly Day1

    网址:https://www.nowcoder.com/acm/contest/201#question A.签到 手速石头剪刀布 #include <cstdio> #include & ...

  4. 浮动清楚浮动及position的用法

    float 在 CSS 中,任何元素都可以浮动. 浮动元素会生成一个块级框,而不论它本身是何种元素. 关于浮动的两个特点: 浮动的框可以向左或向右移动,直到它的外边缘碰到包含框或另一个浮动框的边框为止 ...

  5. ELK日志分析 学习笔记

    (贴一篇之前工作期间整理的elk学习笔记) ELK官网 https://www.elastic.co   ELK日志分析系统 学习笔记 概念:ELK = elasticsearch + logstas ...

  6. 玩4K必备知识:HDMI1.4、2.0、2.0a、2.0b接口参数对比【扫盲贴】

    https://www.4k123.com/thread-55369-1-1.html 前言:玩4K的同学都知道,HDMI接口是视频传输最常用的接口,但是这个接口却有好几个版本HDMI1.4.HDMI ...

  7. Avada v5.0.6 最新版本破解教程如下:

    Avada v5.0.6 最新版本破解教程如下: .找到\themes\Avada\includes\avada-envato-api.php文件,注释掉如下两行代码 $response_code = ...

  8. [LUOGU] P1551 亲戚

    题目背景 若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系. 题目描述 规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚.如 ...

  9. UNIX环境C语言进程控制

    一.进程ID 进程ID即是进程标识,每一个进程都会有一个唯一的非负整数来作为它的进程ID. ID为0的进程通常是调度进程,也可称为交换进程,该进程是内核的一部分,不执行硬盘上的程序,因此也被称为系统进 ...

  10. dbfread报错ValueError错误解决方法

    问题 我在用dbfread处理.dbf数据的时候出现了报错 ValueError("could not convert string to float: b'.'",) 然后查找. ...