题目描述

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。

输入输出格式

输入格式:

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。

输出格式:

只有一行为k个子矩阵分值之和最大为多少。

输入输出样例

输入样例#1:

3 2 2
1 -3
2 3
-2 3
输出样例#1: 
  9
 

Solution

这道题作为一道省选DP来讲的,偏简单了一些.
但是还是有一点思维难度的.
拿到先看 m , m 只有 1 和 2 ?
所以先打了一下 m=1 的情况.
 

状态定义:

f[i][l] 表示到第 i 个点 用掉 l 个矩形的最大值.

转移方程:

for(pre 1--> i-1)

f[i][l]=max(f[i-1][l],f[pre][l-1]+sum[pre-->i]); //sum 表示pre到i的元素值的和.

于是 m=1 便有30 pts.

然后再想 m=2 , 由 m=1 拓展?

于是 定义状态 : f[ i ][ j ][ l ] 表示上面一列到了 i 下面一列到了 j 已选择 l 个矩阵的最大值.

想了想,m=2有一下几种情况:

1. 这个点我不做拓展  --> max( f[ i-1 ][ j-1 ][ l ] , f[ i-1 ][ j-1 ][ l ] ,f[ i ][ j-1 ][ l ] ) ;

2. 由上一列扩展一个小的 s*1 面积的

3. 由上一列扩展一个小的 s*1 面积的

4. 两列都作扩展 ,来一个 s*2 面积的

于是乎,这道题的 DP 也自然就出来了.

代码

#include<bits/stdc++.h>
using namespace std;
int n,m,k;
int f1[][],f[][][];
int c[][],sum[][]; void solve()
{
for(int i=;i<=n;i++)
for(int l=;l<=k;l++)
{
f1[i][l]=f1[i-][l];
for(int j=;j<i;j++)
f1[i][l]=max(f1[j][l-]+sum[][i]-sum[][j],f1[i][l]);
}
cout<<f1[n][k];
return;
} int main()
{
cin>>n>>m>>k;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&c[j][i]),sum[j][i]=sum[j][i-]+c[j][i];
if(m==) {solve();return ;} for(int l=;l<=k;l++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
f[i][j][l]=max(f[i-][j][l],f[i][j-][l]);
for(int pre=;pre<i;pre++) f[i][j][l]=max(f[i][j][l],f[pre][j][l-]+sum[][i]-sum[][pre]);
for(int pre=;pre<j;pre++) f[i][j][l]=max(f[i][j][l],f[i][pre][l-]+sum[][j]-sum[][pre]);
if(i==j)
for(int pre=;pre<i;pre++)
f[i][j][l]=max(f[i][j][l],f[pre][pre][l-]+sum[][i]-sum[][pre]+sum[][j]-sum[][pre]);
}
cout<<f[n][n][k]; return ;
}

[SCOI2005]最大子矩阵 (动态规划)的更多相关文章

  1. BZOJ1084 [SCOI2005]最大子矩阵 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...

  2. BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划

    传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...

  3. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  4. 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1325  Solved: 670[Submit][Stat ...

  5. bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...

  6. 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)

    1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...

  7. BZOJ(6) 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3566  Solved: 1785[Submit][Sta ...

  8. [Luogu 2331] [SCOI2005]最大子矩阵

    [Luogu 2331] [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 ...

  9. 洛谷P2331 [SCOI2005]最大子矩阵 DP

    P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...

随机推荐

  1. 接口接收gzip压缩数据并解压

    asp.net 接收前端gzip 压缩后的数据,接收端需要进行解压 public string GetResponseBody(HttpWebResponse response) { string r ...

  2. (十)maven之排除冲突jar包

    排除冲突jar包 jar包冲突 <dependencies> <dependency> <groupId>org.springframework</group ...

  3. WINDOWS-API:API函数大全

    操作系统除了协调应用程序的执行.内存分配.系统资源管理外,同时也是一个很大的服务中心,调用这个服务中心的各种服务(每一种服务是一个函数),可以帮肋应用程序达到开启视窗.描绘图形.使用周边设备的目的,由 ...

  4. 用border实现三角形的过程

    div{ width:100px; height:100px; background:yellow; border-top: 20px solid red; border-right:20px sol ...

  5. CAP 可用性理解

    从容灾角度看可用性. 多机同时返回. 主通过 heart-beat 脑裂. 用 paxos. 性能远距离. 对整体压力较大. 从用户体验的角度看单数据可用性: 不考虑城市灾备的情况发生.只有单机房的 ...

  6. iOS UIView中的坐标转换convertPoint --- iOS开发系列 ---项目中成长的知识六

    如果你的UITableViewCell里面有一个Button需要响应事件,你会怎么做? 在Controller中使用 button父类的父类?   例如:UITableViewCell *parent ...

  7. 628. Maximum Product of Three Numbers@python

    Given an integer array, find three numbers whose product is maximum and output the maximum product. ...

  8. CF-1082(渣渣只做了前三个)

    链接:http://codeforces.com/contest/1082 A. Vasya and Book 题意: n,x,y,d 一本电子书有n页,每一次翻动只能往前或者往后翻d页.求x-> ...

  9. URAL1765 Error 404

    题目描述: vjudge 题解: STO ljx OTZ 下面这个算法是这位贡献的. 不妨将删去改为加入. 那么对于$n=p^k$,即只有一个质因子的$n$来说,若$i$已选,那么$i+n/p$.$i ...

  10. [LUOGU] P2679 子串

    一开始用一个f数组转移,发现不太对,状态有重叠部分 f[i][j][k]表示考虑了s的前i位,匹配到t的第j位,用了k个子串,且s的第i位必选 g[i][j][k]表示考虑了s的前i位,匹配到t的第j ...