题目描述

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。

输入输出格式

输入格式:

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。

输出格式:

只有一行为k个子矩阵分值之和最大为多少。

输入输出样例

输入样例#1:

3 2 2
1 -3
2 3
-2 3
输出样例#1: 
  9
 

Solution

这道题作为一道省选DP来讲的,偏简单了一些.
但是还是有一点思维难度的.
拿到先看 m , m 只有 1 和 2 ?
所以先打了一下 m=1 的情况.
 

状态定义:

f[i][l] 表示到第 i 个点 用掉 l 个矩形的最大值.

转移方程:

for(pre 1--> i-1)

f[i][l]=max(f[i-1][l],f[pre][l-1]+sum[pre-->i]); //sum 表示pre到i的元素值的和.

于是 m=1 便有30 pts.

然后再想 m=2 , 由 m=1 拓展?

于是 定义状态 : f[ i ][ j ][ l ] 表示上面一列到了 i 下面一列到了 j 已选择 l 个矩阵的最大值.

想了想,m=2有一下几种情况:

1. 这个点我不做拓展  --> max( f[ i-1 ][ j-1 ][ l ] , f[ i-1 ][ j-1 ][ l ] ,f[ i ][ j-1 ][ l ] ) ;

2. 由上一列扩展一个小的 s*1 面积的

3. 由上一列扩展一个小的 s*1 面积的

4. 两列都作扩展 ,来一个 s*2 面积的

于是乎,这道题的 DP 也自然就出来了.

代码

#include<bits/stdc++.h>
using namespace std;
int n,m,k;
int f1[][],f[][][];
int c[][],sum[][]; void solve()
{
for(int i=;i<=n;i++)
for(int l=;l<=k;l++)
{
f1[i][l]=f1[i-][l];
for(int j=;j<i;j++)
f1[i][l]=max(f1[j][l-]+sum[][i]-sum[][j],f1[i][l]);
}
cout<<f1[n][k];
return;
} int main()
{
cin>>n>>m>>k;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&c[j][i]),sum[j][i]=sum[j][i-]+c[j][i];
if(m==) {solve();return ;} for(int l=;l<=k;l++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
f[i][j][l]=max(f[i-][j][l],f[i][j-][l]);
for(int pre=;pre<i;pre++) f[i][j][l]=max(f[i][j][l],f[pre][j][l-]+sum[][i]-sum[][pre]);
for(int pre=;pre<j;pre++) f[i][j][l]=max(f[i][j][l],f[i][pre][l-]+sum[][j]-sum[][pre]);
if(i==j)
for(int pre=;pre<i;pre++)
f[i][j][l]=max(f[i][j][l],f[pre][pre][l-]+sum[][i]-sum[][pre]+sum[][j]-sum[][pre]);
}
cout<<f[n][n][k]; return ;
}

[SCOI2005]最大子矩阵 (动态规划)的更多相关文章

  1. BZOJ1084 [SCOI2005]最大子矩阵 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...

  2. BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划

    传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...

  3. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  4. 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1325  Solved: 670[Submit][Stat ...

  5. bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...

  6. 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)

    1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...

  7. BZOJ(6) 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3566  Solved: 1785[Submit][Sta ...

  8. [Luogu 2331] [SCOI2005]最大子矩阵

    [Luogu 2331] [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 ...

  9. 洛谷P2331 [SCOI2005]最大子矩阵 DP

    P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...

随机推荐

  1. python代理检测

    import socket,threading,os,sys,queue,re socket.setdefaulttimeout(5) path=sys.path[0] if os.path.isfi ...

  2. 当互联网遇上家装,十大家装O2O混战

    2015年已过去大半,装修O2O就出现了新的局面:为数众多的家居网络平台在家装O2O领域还未站稳脚跟,新的入局者就打出超低价格登场.新老O2O家装大战迅速展开,除了拼价格还拼品牌和体验,家装O2O的好 ...

  3. IOS音频视频

    视频播放 MediaPlayer.framework MPMoviePlayerViewController VS MPMoviePlayerController MPMoviePlayerViewC ...

  4. HTML5资源汇总(更新游戏引擎cocos2d-html5)

    我也是现学现用,想了解的可以看看效果,想知道实现的也有源码 http://cocos2d-html5.org Cocos2d-HTML5 API和Cocos2d-x一致,同样的代码可以支持cocos2 ...

  5. 微擎框架中receive.php代码分析

  6. 安装PIL报错解析

    开始安装PIL PIL只支持到python2.7,我安装的是python3.6版本,所以  不支持,报错 需要下载支持自己版本的包,下载地址https://www.lfd.uci.edu/~gohlk ...

  7. Could not resolve matching constructor (hint: specify index/type/name arguments for simple parameter 标签: 构造器注入Spring

    问题:要么是因为构造方法改变了,要么就是构造方法入参实例化失败(比如没有实现) 问题 在练习spring构造器注入方式的小程序的时候报错: Exception in thread “main” org ...

  8. Python基础篇 -- if while 语句

    2.7 if语句 # 单纯if if 条件: 代码块 当条件成立,执行代码块 # 二选一 if 条件: 代码块1 else: 代码块2 #当条件为真,执行代码块1,否则执行代码块2 # 多选一 没有e ...

  9. 搭建SSI开发框架原理

    Spring2.5.Struts2.Ibatis开发框架搭建(一) ssi, ibatis 一.框架下载 1.1   Struts2框架 Struts2框架发展于WebWork,现在捐献给了Apach ...

  10. 三. python面向对象

    第七章.面向对象基础 1.面向对象基础 类和对象: a. 创建类 class 类名: def 方法名(self,xxx): pass b. 创建对象 对象 = 类名() c. 通过对象执行方法 对象. ...