对这种问题不熟悉的读者 可以先去看一看最小圆覆盖的问题 ZOJ1450

现在我们来看最小球覆盖问题POJ2069 题目很裸,给30个点 求能覆盖所有点的最小球的半径。

先给出以下几个事实:

1.对于一个点,球心就是这个点且半径无穷小。

2.对于两个点,球心是两个点线段的中点,半径就是线段长度的一半。

3.对于三个点,三个点构成的平面必为球的大圆,所以球心是三角形的外心,半径就是球心到某个点的距离。

4.对于四个点,若四个点共面则转化到3,只需考虑某三个点的情况,若四点不共面,四面体可以唯一确定一个外接球。

5.对于五个及以上点,其最小球必为其中某4个点的外接球(假设不全共面)。

C(30,4)是可以接受的复杂度。在编程实现的时候,碰到不在球内的点,就让它成为球面上的点,期望复杂度为O(n)。

-----------------------------------------------------------------------------------------------------------------------------------------------

以上我们给出了一般的几何解法,但是求三角形外心和四面体的外界球,方程很复杂,代码量也很大,有没有简单的方法呢?

我们根据以上5个事实,可以知道所谓最小球的球心,它必然处于一个稳定态,也就是与它距离最远的点最多有4个且等距离。

于是,我们首先任选一个点作为球心,并找到点集中与它距离最远的点,我们让球心靠近最远的点,不断重复此过程,就可以让球心达到稳定态了!此时我们就找到了最小球。

 #include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const double eps=1e-;
struct point3D
{
double x,y,z;
} data[];
int n;
double dis(point3D a,point3D b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
}
double solve()
{
double step=,ans=1e30,mt;
point3D z;
z.x=z.y=z.z=;
int s=;
while(step>eps)
{
for(int i=; i<n; i++)
if(dis(z,data[s])<dis(z,data[i])) s=i;
mt=dis(z,data[s]);
ans=min(ans,mt);
z.x+=(data[s].x-z.x)/mt*step;
z.y+=(data[s].y-z.y)/mt*step;
z.z+=(data[s].z-z.z)/mt*step;
step*=0.98;
}
return ans;
}
int main()
{ // freopen("t.txt","r",stdin);
double ans;
while(~scanf("%d",&n),n)
{
for(int i=; i<n; i++)
scanf("%lf%lf%lf",&data[i].x,&data[i].y,&data[i].z);
ans=solve();
printf("%.5f\n",ans);
}
return ;
}

 

POJ2069 最小球覆盖 几何法和退火法的更多相关文章

  1. D.Country Meow 最小球覆盖 三分套三分套三分 && 模拟退火

    // 2019.10.3 // 练习题:2018 ICPC 南京现场赛 D Country Meow 题目大意 给定空间内 N 个点,求某个点到 N 个点的距离最大值的最小值.   思路 非常裸的最小 ...

  2. Super Star(最小球覆盖)

    Super Star http://poj.org/problem?id=2069 Time Limit: 1000MS   Memory Limit: 65536K Total Submission ...

  3. POJ 最小球覆盖 模拟退火

    最小球覆盖:用半径最小的球去覆盖所有点. 纯粹的退火算法,是搞不定的,精度不够,不然就会TLE,根本跑不出答案来. 任取一点为球心,然后一点点靠近最远点.其实这才是最主要的. 因为:4个点确定一个球, ...

  4. poj 1379 模拟退火法

    /* 模拟退火法: 找到一些随机点,从这些点出发,随机的方向坐标向外搜索: 最后找到这些随机点的最大值: 坑://if(xx>-eps&&xx<x+eps&& ...

  5. 最小球覆盖——模拟退火&&三分套三分套三分

    题目 给出 $N(1 \leq N \leq 100)$ 个点的坐标 $x_i,y_i,z_i$($-100000 \leq x_i,y_i,z_i \leq 100000$),求包围全部点的最小的球 ...

  6. NOIP2002矩形覆盖[几何DFS]

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  7. Gym - 101981D The 2018 ICPC Asia Nanjing Regional Contest D.Country Meow 最小球覆盖

    题面 题意:给你100个三维空间里的点,让你求一个点,使得他到所有点距离最大的值最小,也就是让你找一个最小的球覆盖掉这n个点 题解:红书模板题,这题也因为数据小,精度也不高,所以也可以用随机算法,模拟 ...

  8. POJ2069 最小球体覆盖, 模拟退火

    只是套了个模板,模拟退火具体的过程真心不懂阿 //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #in ...

  9. 最小圆覆盖(随机增量法&模拟退火法)

    http://acm.hdu.edu.cn/showproblem.php?pid=3007 相关题型连接: http://acm.hdu.edu.cn/showproblem.php?pid=393 ...

随机推荐

  1. python中正则表达式与模式匹配

    一.前言 在之前找工作过程中,面试时经常被问到会不会python,懂不懂正则表达式.心里想:软件的东西和芯片设计有什么关系?咱也不知道因为啥用这个,咱也不敢问啊!在网上搜索到了一篇关于脚本在ASIC领 ...

  2. SQL-Redis使用详细教程

    一.Redis基础部分: 1.redis介绍与安装比mysql快10倍以上 *****************redis适用场合**************** 1.取最新N个数据的操作 2.排行榜应 ...

  3. 九度oj 题目1180:对称矩阵

    题目1180:对称矩阵 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3092 解决:1607 题目描述: 输入一个N维矩阵,判断是否对称. 输入: 输入第一行包括一个数:N(1<= ...

  4. 在workbench中导入.sql文件!(导入数据库文件)

    第一步,登陆mysql workbench 第二步,打开自己的数据 ,此处默认(root) 打开数据库后页面 : 第三步,新建一个schema ,随便给个名字,这里起名为test : 可以看到test ...

  5. ssh远程登录

    ssh root@192.168.124.128 密钥登录: 1).ssh-keygen 生成公钥和私钥 [root@rhel5 ~]# ssh-keygen -t rsa Generating pu ...

  6. 前端自动化测试工具--使用karma进行javascript单元测试(转)

    Karma+Jasmine+PhantomJS组合的前端javascript单元测试工具. 1.介绍 Karma是由Google团队开发的一套前端测试运行框架,karma会启动一个web服务器,将js ...

  7. JDBC的Statement对象

    以下内容引用自http://wiki.jikexueyuan.com/project/jdbc/statements.html: 一旦获得了数据库的连接,就可以和数据库进行交互.JDBC的Statem ...

  8. 采用jmeter测试dubbo服务接口

    http://www.kissyu.org/2017/02/08/jmeter%E6%B5%8B%E8%AF%95dubbo%E6%8E%A5%E5%8F%A3/

  9. flask应用的分页

    Flask-SQLAlchemy支持分页 https://www.jianshu.com/p/5e03cd202728

  10. UIButton和UISlider

    UIButton 主要功能:按钮控件,主要用于与用户操作进行交互 经常使用属性及方法 系统内建的按钮类型 UIButtonTypeCustom UIButtonTypeSystem UIButtonT ...