Modular multiplication of polynomials
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4377   Accepted: 1980

Description

Consider polynomials whose coefficients are 0 and 1. Addition of two polynomials is achieved by 'adding' the coefficients for the corresponding powers in the polynomials. The addition of coefficients is performed by addition modulo 2, i.e., (0 + 0) mod 2 =
0, (0 + 1) mod 2 = 1, (1 + 0) mod 2 = 1, and (1 + 1) mod 2 = 0. Hence, it is the same as the exclusive-or operation. 



(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2 



Subtraction of two polynomials is done similarly. Since subtraction of coefficients is performed by subtraction modulo 2 which is also the exclusive-or operation, subtraction of polynomials is identical to addition of polynomials. 



(x^6 + x^4 + x^2 + x + 1) - (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2 



Multiplication of two polynomials is done in the usual way (of course, addition of coefficients is performed by addition modulo 2). 



(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 



Multiplication of two polynomials f(x) and g(x) modulo a polynomial h(x) is the remainder of f(x)g(x) divided by h(x). 



(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) modulo (x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1 

The largest exponent of a polynomial is called its degree. For example, the degree of x^7 + x^6 + 1 is 7. 



Given three polynomials f(x), g(x), and h(x), you are to write a program that computes f(x)g(x) modulo h(x). 

We assume that the degrees of both f(x) and g(x) are less than the degree of h(x). The degree of a polynomial is less than 1000. 



Since coefficients of a polynomial are 0 or 1, a polynomial can be represented by d+1 and a bit string of length d+1, where d is the degree of the polynomial and the bit string represents the coefficients of the polynomial. For example, x^7 + x^6 + 1 can be
represented by 8 1 1 0 0 0 0 0 1.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of three lines that contain three polynomials f(x), g(x), and h(x), one per line. Each polynomial is represented as described
above.

Output

The output should contain the polynomial f(x)g(x) modulo h(x), one per line.

Sample Input

2
7 1 0 1 0 1 1 1
8 1 0 0 0 0 0 1 1
9 1 0 0 0 1 1 0 1 1
10 1 1 0 1 0 0 1 0 0 1
12 1 1 0 1 0 0 1 1 0 0 1 0
15 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1

Sample Output

8 1 1 0 0 0 0 0 1
14 1 1 0 1 1 0 0 1 1 1 0 1 0 0

Source

Taejon 2001

你  离  开  了  ,  我  的  世  界  里  只  剩  下  雨  。  。  。

#include <iostream>
#include<string.h>
using namespace std;
int pd(int sum[],int ls,int h[],int lh)
{
if(ls>lh)return 1;
if(ls<lh)return -1;
if(ls==lh)
{
int i;
for(i=ls-1; i>=0; i--)
{
if(sum[i]&&!h[i])return 1;
if(!sum[i]&&h[i])return -1;
}
}
return 0;
}
int main()
{
int n;
cin>>n;
int c;
for(c=1; c<=n; c++)
{
int lf,lg,lh;
int f[1001],g[1001],h[1001];
int i;
cin>>lf;
for(i=lf-1; i>=0; i--)
cin>>f[i];
cin>>lg;
for(i=lg-1; i>=0; i--)
cin>>g[i];
cin>>lh;
for(i=lh-1; i>=0; i--)
cin>>h[i];
int sum[2001];
memset(sum,0,sizeof(sum));
int j;
for(i=0; i<lf; i++)
for(j=0; j<lg; j++)
sum[i+j]=sum[i+j]^(f[i]&g[j]);
int ls;
ls=lf+lg-1;
while(pd(sum,ls,h,lh)>=0)
{
int d=ls-lh;
for(i=0; i<lh; i++)
sum[i+d]=sum[i+d]^h[i];
while(ls&&!sum[ls-1])
--ls;
}
if(ls==0)ls=1;
cout<<ls<<" ";
for(i=ls-1; i>0; i--)
cout<<sum[i]<<" ";
cout<<sum[0]<<endl;
}
return 0;
}

POJ 1060:Modular multiplication of polynomials的更多相关文章

  1. POJ 1060 Modular multiplication of polynomials(多项式的加减乘除,除法转化成减法来求)

    题意:给出f(x),g(x),h(x)的 (最高次幂+1)的值,以及它们的各项系数,求f(x)*g(x)/h(x)的余数. 这里多项式的系数只有1或0,因为题目要求:这里多项式的加减法是将系数相加/减 ...

  2. POJ1060 Modular multiplication of polynomials

    题目来源:http://poj.org/problem?id=1060 题目大意: 考虑系数为0和1的多项式.两个多项式的加法可以通过把相应次数项的系数相加而实现.但此处我们用模2加法来计算系数之和. ...

  3. POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3 ...

  4. UVALive 2323 Modular Multiplication of Polynomials(模拟)

    这是一个相对简单的模拟,因为运算规则已经告诉了我们,并且比较简单,不要被吓到…… 思路:多项式除以另外一个多项式,如果能除,那么他的最高次一定被降低了,如果最高次不能被降低,那说明已经无法被除,就是题 ...

  5. Lintcode: Hash Function && Summary: Modular Multiplication, Addition, Power && Summary: 长整形long

    In data structure Hash, hash function is used to convert a string(or any other type) into an integer ...

  6. poj 1060

    http://poj.org/problem?id=1060 题意:多项式的运算的题目,不过这个运算有个特点,就是只要是同项的多项式,无论相加还是相减,都为0,给你三个多项式,分别为a,b,c. 要你 ...

  7. POJ 3673 Cow Multiplication

    Cow Multiplication Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13312   Accepted: 93 ...

  8. Poj 3318 Matrix Multiplication( 矩阵压缩)

    Matrix Multiplication Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18928   Accepted: ...

  9. poj 2505 A multiplication game(博弈)

    A multiplication game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5622   Accepted: ...

随机推荐

  1. 树莓派--bcm2835 library (2) 交叉编译BCM2835

    在上文中,按照guide, 在树莓派目标板上install bcm2835. 因为bcm2835是用户空间应用,所以可以在宿主机上交叉编译,生成binary后在树莓派执行 按照guide: Insta ...

  2. 10.Spring Bean的生命周期

    Spring IOC容器可以管理Bean的生命周期,允许在Bean声明周期的特定点执行定制的任务. Spring IOC容器对Bean的生命周期进行管理的过程. 1.通过构造器或工厂方法创建Bean实 ...

  3. python 项目部署virtualenv

    安装virtualenv---------------------------------------- mac: pip3 install virtualenv ubuntu: apt instal ...

  4. PHP:压缩 Zip

    文章来源:http://www.cnblogs.com/hello-tl/p/7661222.html <?php # 文件字符集 header("Content-type: text ...

  5. Spider-Python爬虫之XPath 教程

    原文链接:https://www.runoob.com/xpath/xpath-syntax.html XPath 术语 XPath 节点 七种类型:在 XPath 中,有七种类型的节点:元素.属性. ...

  6. 90-Standard Deviation 标准离差指标.(2015.7.4)

    Standard Deviation 标准离差指标 ~计算: StdDev = SQRT (SUM (CLOSE - SMA (CLOSE, N), N)^2)/N 注解: SQRT - 正方体根: ...

  7. 75-ADMI,Average Directional Movement Index,平均方向性运动指标.(2015.7.1)

    ADMI,Average Directional Movement Index 平均方向性运动指标 Directional Movement Index,平均方向性运动指标.(2015.7.1)&qu ...

  8. i2c精简总结

    基本的i2c的编程包括:读数据,写命令,写数据 有关i2c的时序需要的话查看这里http://blog.csdn.net/qqliyunpeng/article/details/41511347 1. ...

  9. spring+orm框架的兼容问题

    Springframework和Hibernate版本对应关系 org.springframework 3.0.x对应org.hibernate4.0.x版本 org.springframework ...

  10. 九度oj 题目1061:成绩排序

    题目1061:成绩排序 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:24473 解决:6960 题目描述: 有N个学生的数据,将学生数据按成绩高低排序,如果成绩相同则按姓名字符的字母序排 ...