Rikka with Phi 线段树
There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board:
1. "C A B C" Color the board from segment A to segment B with color C.
2. "P A B" Output the number of different colors painted between segment A and segment B (including).
In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your.
Input
Output
Sample Input
2 2 4
C 1 1 2
P 1 2
C 2 2 2
P 1 2
Sample Output
2
1
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
using namespace std;
typedef long long LL;
const int MAXN = 1e7 + ;
const int N = 3e5 + ;
LL euler[MAXN];
void geteuler()
{
memset(euler, , sizeof(euler));
euler[] = ;
for (LL i = ; i < MAXN; i++)
{
if (!euler[i])
for (LL j = i; j < MAXN; j += i)
{
if (!euler[j]) euler[j] = j;
euler[j] = euler[j] / i * (i - );
}
}
}
struct node
{
int l, r;
LL sum, laz;
}T[N * + ];
LL a[N];
void pushup(int p)
{
T[p].sum = T[p * ].sum + T[p * + ].sum;
if (T[p * ].laz == T[p * + ].laz)
T[p].laz = T[p * ].laz;
else
T[p].laz = ;
}
void pushdown(int p)
{
if (T[p].laz)
{
T[p * ].laz = T[p * + ].laz = T[p].laz;
T[p * ].sum = T[p].laz * (T[p * ].r - T[p * ].l + );
T[p * + ].sum = T[p].laz * (T[p * + ].r - T[p * + ].l + );
}
}
void update1(int x, int l, int r)
{
if (T[x].laz&&T[x].l == l&&T[x].r == r)
{
T[x].laz = euler[T[x].laz];
T[x].sum = T[x].laz * (T[x].r - T[x].l + );
return;
}
pushdown(x);
int mid = (T[x].l + T[x].r) / ;
if (r <= mid)
update1(x * , l, r);
else if(l > mid)
update1(x * + , l , r);
else
{
update1(x * , l, mid);
update1(x * + , mid + , r);
}
pushup(x);
}
void update2(int x, int l, int r, LL val)
{
if (l == T[x].l&&r == T[x].r)
{
T[x].laz = val;
T[x].sum = (T[x].r - T[x].l + )*T[x].laz;
return;
}
pushdown(x);
int mid = (T[x].l + T[x].r) / ;
if (r <= mid)
update2(x * , l, r, val);
else if (l > mid)
update2(x * + , l, r, val);
else
{
update2(x * , l, mid, val);
update2(x * + , mid + , r, val);
}
pushup(x);
} void build(int x, int l, int r)
{
T[x].l = l, T[x].r = r;
T[x].laz = T[x].sum = ;
if (l == r)
{
T[x].laz = T[x].sum = a[l];
return;
}
int mid = (l + r) / ;
build(x * , l, mid);
build(x * + , mid + , r);
pushup(x);
} LL query(int x, int l, int r)
{
if (T[x].l == l&&T[x].r == r)
return T[x].sum;
int mid = (T[x].l + T[x].r) / ;
pushdown(x);
if (r <= mid)
return query(x * , l, r);
else if (l > mid)
return query(x * + , l, r);
else
return query(x * , l, mid) + query(x * + , mid + , r);
}
int t, n, m;
int main()
{
geteuler();
ios::sync_with_stdio();
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++)
scanf("%lld", &a[i]);
build(, , n);
int op, L, R;
LL tmp;
while (m--)
{
scanf("%d%d%d", &op, &L, &R);
if (op == )
{
update1(, L, R);
}
else if (op == )
{
scanf("%lld", &tmp);
update2(, L, R, tmp);
}
else if (op == )
{
printf("%lld\n", query(, L, R));
}
}
}
}
Count Color
修改节点的值,查询区间总和
这里laz就表示当前区间元素是否相同 pushdown 顺推
pushup
只有当左右两边都是整块而且左右边的颜色相等才能设置laz =
这里多了一个左右都是整块的条件是因为在欧拉的题目中laz>0就表示是整块了 Rikka with Phi
laz有两个含义:laz== 表示当前区间多个元素值不同
laz == x 表示当前区间元素的值都是x
修改节点的值,查询区间总和
pushdown
顺推即可,laz 相同, sum计算一下
pushup
当前sum = 子区间sum之和
当前laz = 子区间laz 相同? 子区间laz,否则为0 分为块状区域统一处理,当处理比当前块更小的块的时候,把之前积累的信息传递下去,递归处理 两个题的区别在于颜色的题目不需要Laz来表示当前值,当前值用color表示即可 PUSHDOWN
更新结点数据
PUSHUP
根据结点更新当前点的数据
Rikka with Phi 线段树的更多相关文章
- HDU5634 Rikka with Phi 线段树
// HDU5634 Rikka with Phi 线段树 // 思路:操作1的时候,判断一下当前区间是不是每个数都相等,在每个数相等的区间上操作.相当于lazy,不必更新到底. #include & ...
- HDU 5634 Rikka with Phi 线段树
题意:bc round 73 div1 D 中文题面 分析:注意到10^7之内的数最多phi O(log(n))次就会变成1, 因此可以考虑把一段相同的不为1的数缩成一个点,用平衡树来维护. 每次求p ...
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- hdu 5828 Rikka with Sequence 线段树
Rikka with Sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...
- HDU 6089 Rikka with Terrorist (线段树)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6089 题解 这波强行维护搞得我很懵逼... 扫描线,只考虑每个点能走到左上方(不包括正上方,但包括正左 ...
- Rikka with Mista 线段树求交点个数
由于上下线段是不可能有交点的 可以先看左右线段树,按照y递增的顺序,对点进行排序. 升序构造,那么对于从某一点往下的射线,对于L,R进行区间覆盖,线段交点个数就是单点的被覆盖的次数. 降序构造,那么对 ...
- HDU5828 Rikka with Sequence 线段树
分析:这个题和bc round 73应该是差不多的题,当时是zimpha巨出的,那个是取phi,这个是开根 吐槽:赛场上写的时候直接维护数值相同的区间,然后1A,结果赛后糖教一组数据给hack了,仰慕 ...
- HDU 5828 Rikka with Sequence(线段树区间加开根求和)
Problem DescriptionAs we know, Rikka is poor at math. Yuta is worrying about this situation, so he g ...
- 牛客多校第十场 A Rikka with Lowbit 线段树
链接:https://www.nowcoder.com/acm/contest/148/A来源:牛客网 题目描述 Today, Rikka is going to learn how to use B ...
随机推荐
- php数组转为字符串,数据库存储
php对象转字符存储数据库的方法. 总所周知对象是不能直接存储到数据库的.那么我们用什么样的方法能够存储到数据库中能? 方法一:序列化serialize和unserialize 序列化对象serial ...
- Spring注解驱动开发之Ioc容器篇
前言:现今SpringBoot.SpringCloud技术非常火热,作为Spring之上的框架,他们大量使用到了Spring的一些底层注解.原理,比如@Conditional.@Import.@Ena ...
- Farseer.net轻量级ORM开源框架 V1.x 入门篇:新版本说明
导航 目 录:Farseer.net轻量级ORM开源框架 目录 上一篇:没有了 下一篇:Farseer.net轻量级ORM开源框架 V1.x 入门篇:数据库配置 前言 V1.x版本终于到来了.本次 ...
- flex布局(主要分清楚容器和条目)
设置在容器上面的属性:flex-direction.flex-wrap.flex-flow.justify-content.align-items.align-content1.flex-direct ...
- php从mysql数据库中取数据
php从数据库中取数据 面向过程 <?php $server_name="localhost:3306"; //数据库服务器名称 $username="root& ...
- iis 配置文件解决跨域问题
<system.webServer> <httpProtocol> <customHeaders> <add name="Access-Contro ...
- Flask框架 之上下文、请求钩子与Flask_Script
一.上下文 请求上下文:request与session 应用上下文:current_app与g:一次请求多个函数可以用它传参 @app.route("/") def index() ...
- 小b和灯泡
2489 小b和灯泡 2 秒 262,144 KB 10 分 2 级题 小b有n个关闭的灯泡,编号为1...n. 小b会进行n轮操作,第i轮她会将编号为i的倍数的灯泡的开关状态取反,即开变成关,关 ...
- ssd运行过程中遇到的bug
1.出现以下错误: 没有添加环境变量: https://github.com/weiliu89/caffe/issues/4 可以看到当前PYTHONPATH不再ssd1里面,所以需要修改,修改之后就 ...
- vue之loader处理静态资源
webpack 是利用loader 来处理各种资源的,wepback的配置基本上就是为各种资源文件,指定不同类型的loader. 1,处理css 最基本的css 处理loader 是css-loade ...