1742 爬楼梯

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
 
 
 
题目描述 Description

小明家外面有一个长长的楼梯,共N阶。小明的腿很长,一次能跨过一或两阶。有一天,他突发奇想,想求出从最低阶到最高阶共有几种爬楼梯的方案。你帮帮他吧!

输入描述 Input Description

一个整数N。

输出描述 Output Description

一个整数,为方案总数。

样例输入 Sample Input

5

样例输出 Sample Output

8

数据范围及提示 Data Size & Hint

0≤N≤40

思路:

1 2 3 5 8 13 21……

大佬们一定发现了这个题是斐波那契数列吧?!(好了,废话少说,我们来A题)

代码:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>

#define N 100
using namespace std;
long long n,ans,f[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
int main()
{
    n=read();
    f[]=;f[]=;
    ;i<=n;i++)
     f[i]=f[i-]+f[i-];
    ans=f[n];
    printf("%lld",ans);
    ;
}

codevs——1742 爬楼梯的更多相关文章

  1. codevs 1742 爬楼梯(水题日常)

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 小明家外面有一个长长的楼梯,共N阶.小明的腿很长,一次能跨过一或两阶.有一天,他 ...

  2. lintcode: 爬楼梯

    题目: 爬楼梯 假设你正在爬楼梯,需要n步你才能到达顶部.但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部? 样例 比如n=3,中不同的方法 返回 3 解题: 动态规划题目,同时还是有顺序 ...

  3. 爬楼梯问题-斐波那契序列的应用.md

    N 阶楼梯,一次可以爬1.2.3...n步,求爬楼梯的种类数 /** * 斐波那契序列 */ public class ClimbingStairs { // Sol 1: 递归 // 递归 公式:F ...

  4. 2017广东工业大学程序设竞赛C题爬楼梯

    Description 小时候,我只能一阶一阶得爬楼梯, 后来,我除了能一次爬一阶,还可以一次爬两阶, 到现在,我最多一次可以爬三阶. 那么现在问题来了,我想爬上n层楼,相邻楼层之间有一段楼梯,虽然我 ...

  5. c++(爬楼梯)

    前两天上网的时候看到一个特别有意思的题目,在这里和朋友们分享一下: 有一个人准备开始爬楼梯,假设楼梯有n个,这个人只允许一次爬一个楼梯或者一次爬两个楼梯,请问有多少种爬法? 在揭晓答案之前,朋友们可以 ...

  6. Algorithm --> 爬楼梯求最大分数

    爬楼梯求最大分数 如下图,最大分数是: 10+20+25+20=75.        要求: 1.每次只能走一步或者两步: 2.不能连续三步走一样的,即最多连续走两次一步,或者连续走两次两步: 3.必 ...

  7. climbing stairs(爬楼梯)(动态规划)

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  8. [Swift]LeetCode70. 爬楼梯 | Climbing Stairs

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  9. Leetcode#70. Climbing Stairs(爬楼梯)

    题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...

随机推荐

  1. C#过时方法标记

    1.当遇到过时或废弃的方式 函数怎么办 [Obsolete]特性解决你的困惑 1.1:当方法已经完成相关兼容 可以保留时

  2. SQLite busy handler

    SQLite doesn't support high concurrency. In case of a lot of concurrent access from multi-process or ...

  3. tomcat不打印日志

    commons-logging.jar导入这个包到tomcat  lib下 2.修改tomcat的bin目录下面的catalina.bat文件   只需修改:set CLASSPATH=%CLASSP ...

  4. 关于NSCELL

    作为一个初学者,我一直很弄不明白NSCell的子类,比如,NSButtonCell,NSImageCell及其对应的控件之间的关系.今天,在做一个TableView实现的时候,我终于开始有点悟了——好 ...

  5. idea 常用操作

    1.创建的maven项目,java文件不提示错误:有main方法但右击却找不到run选项的问题 1)首先要配置SDK--就是配置JDK 2)然后要按照提示信息导入某些maven相关的东西,就这个Eve ...

  6. clusterdb - 对一个PostgreSQL数据库进行建簇

    SYNOPSIS clusterdb [ connection-option...] [ --table | -t table] [ dbname] clusterdb [ connection-op ...

  7. badblocks - 查询设备的坏区块

    语法(SYNPSIS) badblocks [ -svwnf ] [ -b block-size ] [ -c blocks_at_once ] [ -i input_file ] [ -o outp ...

  8. CAD参数绘制点(网页版)

    点在CAD中的作用除了可以分割对象外,还能测量对象,点不仅表示一个小的实体,而且通过点作为绘图的参考标记. pdmode是一个控制point的形式的系统变量,当pdmode=0时是可见的一个点,当pd ...

  9. java_tcp_简单示例

    package netProgram; import java.io.DataOutputStream; import java.io.IOException; import java.net.Ser ...

  10. MYSQL之错误代码----mysql错误代码与JAVA实现

    原文地址:MYSQL之错误代码----mysql错误代码与JAVA实现作者:戒定慧 his chapter lists the errors that may appear when you call ...