Gear Pump: Why Install A Pressure Reducing Valve?
When the Gear Pump Manufacturers prompts to install a gear pump, the following points should be noted:
When using a gear pump, a pressure relief valve must be installed to protect the pump when the pump is closed or the valve is closed. The PRV can be piped to the suction side of the pump or to the supply tank.
The pump driven by the belt drive has additional protection and if the pump is headless, the belt will slide in the pulley. If the pump is to be driven by a belt, install bearings with heavy-duty radial load carrying capacity. If a drive coupling is used between the motor and the pump, the laser or reverse scale indicator method must be used to precisely align the shaft 0.05 mm (0.002") from the shaft end of the motor to the pump shaft end. Movement, thereby loading the bearing and deforming the shaft as the shaft rotates. The flexible coupling will transfer these loads.
These pumps need to be securely and securely mounted on a sturdy metal base and base. If direct in-line drive through the coupling is used, the entire pump set must be mounted on a sturdy steel frame with the pump foot position flat to within 0.025 (0.001") tolerance
As a professional Gear Pump Manufacturers and gear pump supplier in China, Taizhou Eternal Hydraulic Machinery Co , Ltd . can provide you with high quality products and services. Our team has more than 10 years of experience in hydraulics export, quality and price concessions, focusing on the hydraulic field and working more safely with professional companies.
Gear Pump: Why Install A Pressure Reducing Valve?的更多相关文章
- Parker Gear Pump - Gear Pump Seal Is More O-Ring: Role
Parker Gear Pump introduction Gear pump lip seal is mainly used in reciprocating dynamic seals. C ...
- EPANET头文件解读系列5——TYPES.H
/************************************************************************ ...
- Autel MaxiSys MS906TS tire pressure settings Lexus LS460h
Use AUTEL MaxiSYS MS906TS error reader to install tire pressure Lexus LS460h in Vung Tau. Make : Lex ...
- Piston Pump Manufacturers - Mobile Cartridge Piston Pump: Advantages
The Piston Pump Manufacturers states that the operation of any piston pump is based on the rela ...
- Vickers Vane Pump Tips - Vane Pump Maintenance Note
The Vickers Vane Pump describes the matters needing attention in the maintenance of the vane p ...
- Vickers Vane Pump - Hydraulic Vane Pump Failure: Cavitation, Mechanical Damage
One of our readers recently wrote to me about the following questions: “Recently, we purchased a sec ...
- EPANET能做什么,不能做什么
What Epanet cand and cannot do Good news!Epanet can do most of the calculations you may need for you ...
- Plastic Sprayer Manufacturer - How Does The Sprayer Work?
The Plastic Sprayers Manufacturer stated that the sprayer is a very useful type of machine and a g ...
- Cosmetic Sprayer Structure Anatomy
What shape of spray is sprayed by the cosmetic spray pump head? Plastic Sprayers Manufacturer ...
随机推荐
- UI:多线程 、用GCD创建线程
什么是应用(程序):就是我们编写的代码编译后生成的app文件 进程:凡是一个运行的程序都可以看作为一个进程,如打开的多个 word,就可以认为是一个进程的多个线程. 线程:至少有一个线程就是主线程,网 ...
- struts2添加需要的jar包
转自:https://blog.csdn.net/fance611261/article/details/6790737 以前总是在myeclipse中添加jar包的,由于现在转向了eclipse,原 ...
- 洛谷 - P2045 - 方格取数加强版 - 费用流
原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...
- Codeforces - 466C - Number of Ways - 组合数学
https://codeforces.com/problemset/problem/466/C 要把数据分为均等的非空的三组,那么每次确定第二个分割点的时候把(除此之外的)第一个分割点的数目加上就可以 ...
- poj2239 poj1274【二分匹配】
题意: 就是尽可能的选多的课 思路: 把课程和上课的时间看作二分图 跑一跑二分匹配就好了 #include<iostream> #include<cstdio> #includ ...
- Codeforces732E Sockets
首先检测有木有和Computer匹配的Socket,如果有则将其匹配. 然后将所有没有匹配的Socket连上Adapter,再去检测有木有Computer与Socket匹配. 重复这个操作31次,所有 ...
- MAC下如何配置Android手机调试(将测试手机加入到Mac系统的调试列表中)
第一步: 查看usb设备信息 在 终端输入:system_profiler SPUSBDataType 可以查看连接的usb设备的信息 比如我的usb信息如下(部分内容): 查看到我的Andr ...
- Codeforces Round #510 (Div. 2) A&B By cellur925
第一次CF祭== 由于太菜了只做了前两题== 因为在第一题上耗费时间太多了,我还是太菜了==. A. Benches time limit per test 1 second memory limit ...
- 继续(3n+1)猜想 (25)
#include <algorithm> #include <iostream> using namespace std; int main(){ ] = { }; ], nu ...
- 浅谈算法——FWT(快速沃尔什变换)
其实FWT我啥都不会,反正就是记一波结论,记住就好-- 具体证明的话,推荐博客:FWT快速沃尔什变换学习笔记 现有一些卷积,形如 \(C_k=\sum\limits_{i\lor j=k}A_i*B_ ...