Description


小明是一个聪明的孩子,对数论有着很浓烈的兴趣。

他发现求1到正整数10n 之间有多少个素数是一个很难的问题,该问题的难以决定于n 值的大小。

现在的问题是,告诉你n的值,让你帮助小明计算小于10n的素数的个数值共有多少位?

Input


输入数据有若干组,每组数据包含1个整数n(1 < n < 1000000000),若遇到EOF则处理结束。

Output


对应每组数据,将小于10n 的素数的个数值的位数在一行内输出,格式见样本输出。同组数据的输出,其每个尾数之间空一格,行末没有空格。

Sample Input


3

7

Sample Output


3

6

Hint


素数定理

题解


素数定理:\(\pi(x)\):小于x的素数个数

\(\pi(x)/(x/lnx)=1\),这个公式随着x的增长而愈发准确。

10进制的位数公式为\(lgx+1\)

\[\begin {aligned}
Ans&=lg\frac{10^n}{ln^{(10^n)}} +1\\\
&=lg^{10^n}-lg^{ln^{10^n}} +1\\\
&= n-lg^{nln^{10}}+1\\\
&=n-(lg^n+lg^{ln^{10}})+1\\\
&=n-lg^n-lg^{ln^{10}}+1
\end {aligned}
\]

参考代码

#include<cmath>
#include<iostream>
using namespace std;
int main(){
int n;
while(cin>>n){
int m=double(n-log10(n)-log10(log(n)));
cout<<int(m)+1<<endl;
}
return 0;
}

【NEFU 117 素数个数的位数】(素数定理)的更多相关文章

  1. NEFU 117 - 素数个数的位数 - [简单数学题]

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=117 Time Limit:1000ms Memory Limi ...

  2. NEFU 117-素数个数的位数(素数定理)

    题目地址:NEFU 117 题意:给你一个整数N(N<1e9).假设小于10^N的整数中素数的个数为π(N).求π(N)的位数是多少. 思路:题目的数据量非常大,直接求肯定TLE,所以考虑素数定 ...

  3. nefu117 素数个数的位数,素数定理

    素数个数的位数 Time Limit 1000ms Memory Limit 65536K description 小明是一个聪明的孩子,对数论有着非常浓烈的兴趣.他发现求1到正整数10n 之间有多少 ...

  4. NEFU_117素数个数的位数

    题目传送门:点击打开链接 Problem : 117 Time Limit : 1000ms Memory Limit : 65536K description 小明是一个聪明的孩子,对数论有着很浓烈 ...

  5. 素数个数的位数<Math>

    小明是一个聪明的孩子,对数论有着很浓烈的兴趣.他发现求1到正整数10^n (10的n次方)之间有多少个素数是一个很难的问题,该问题的难点在于决定于10^n 值的大小. 告诉你n的值,并且用ans表示小 ...

  6. 素数定理 nefu 117

    素数定理: 随着x的增长,P(x) ≍x/ln(x) ,P(x)表示(1,x)内的素数的个数. 这个定理,说明在1-x中,当x大到一定程度时,素数分布的概率为ln(x) 竟然还有一道题目. 素数个数的 ...

  7. 素数分布 - nefu 117

    素数个数的位数 - nefu 117 普及一个公式: 位数公式:要求一个数x的位数,用公式:lg(x)+1 素数分布:n/ln(n) 所以直接求解n/ln(n)的位数就可以了 代码如下: #inclu ...

  8. nefu 117 素数定理

    小明是一个聪明的孩子,对数论有着很浓烈的兴趣.他发现求1到正整数10n 之间有多少个素数是一个很难的问题,该问题的难以决定于n 值的大小.现在的问题是,告诉你n的值,让你帮助小明计算小于10n的素数的 ...

  9. LeetCode Count Primes 求素数个数(埃拉托色尼筛选法)

    题意:给一个数n,返回小于n的素数个数. 思路:设数字 k =from 2 to sqrt(n),那么对于每个k,从k2开始,在[2,n)范围内只要是k的倍数的都删掉(也就是说[k,k2)是不用理的, ...

随机推荐

  1. Win7执行应用报CLR20r3错误处理记录

    Windows7环境下运行应用报"CLR20r3"错误,错误信息如下: 问题详细信息: 问题签名: 问题事件名称: CLR20r3 问题签名 : qbbtools.exe 问题签名 ...

  2. Objective-C和 C++ 混编的要点(转)

    Using C++ With Objective-C苹果的Objective-C编译器允许用户在同一个源文件里自由地混合使用C++和Objective-C,混编后的语言叫Objective-C++.有 ...

  3. HDU 2828 Lamp 二分图的最大匹配 模型题

    http://acm.hdu.edu.cn/showproblem.php?pid=2828 给定n个灯,m个开关,使得每栈灯亮,前提是控制这栈灯的开关的状态是其中一个.(题目应该都看得懂) 其实我想 ...

  4. 从零开始docker部署flask

    1.下载一个Ubuntu镜像 2.启动镜像,使用apt-get安装python.安装pip,建议也装个vim吧 3.通过以上的容器生成一个新的镜像,命令如下docker commit afcaf46e ...

  5. windows下常用的一些shell命令

    看的视频上都是linux系统的shell命令,和windows区别很多.所以整理了windows常用的一些shell命令. 注意:并不是每个都试验过,使用时还需自己验证下. 学system和os,su ...

  6. poj1857 To Europe! To Europe!

    思路: 一维dp. 实现: #include <cstdio> #include <iostream> using namespace std; const int INF = ...

  7. 字符串、数组、json

    一.字符串 string 1.字符串的定义: (1).var s="haha"; (2).var s=new string ("hello") 对象形式定义 2 ...

  8. Centos 6 安装python2.7.6

    centos 是自带python的.但是版本稍微旧一些.搞python开发,肯定要用新一点的稳定版.所以,要升级一下python. 先去python主站下载python的源码包:Python-2.7. ...

  9. (转)SpringMVC学习(九)——SpringMVC中实现文件上传

    http://blog.csdn.net/yerenyuan_pku/article/details/72511975 这一篇博文主要来总结下SpringMVC中实现文件上传的步骤.但这里我只讲单个文 ...

  10. CodeForces - 1059D——二分/三分

    题目 题目链接 简单的说,就是作一个圆包含所有的点且与x轴相切,求圆的最小半径 方法一 分析:求最小,对半径而言肯定满足单调性,很容易想到二分.我们二分半径,然后由于固定了与X轴相切,我们对于每一个点 ...