HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
InputOn the first line one positive number: the number of testcases, at most 100. After that per testcase:
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.OutputPer testcase:
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.Sample Input
- 2
- 4 0
- 3 2
- 1 2
- 1 3
Sample Output
- 4
- 2
- 题意:
给定一张有向图,问最少添加几条边使得有向图成为一个强连通图。- 题解:
缩完点的图是一个DAG,变成强联通就是,一个点至少一个出度一个入度
所以只需要输出缩完点后的图入度和出度最大值既可。
这个真的很好想,自己瞎比比搞了半天,浪费了许多时间。
真的菜。
想到后怒删代码,修改就过了。
- #include<cstring>
- #include<iostream>
- #include<algorithm>
- #include<cmath>
- #include<cstdio>
- #define N 20007
- #define M 50007
- using namespace std;
- int n,m,tim,sc,totalin,totalout;
- int top,dfn[N],low[N],stack[N],ins[N],bel[N],chu[N],ru[N],boo[N];
- int cnt,head[N],Next[M],rea[M];
- struct Node
- {
- int ru,chu;
- void init()
- {
- ru=chu=;
- }
- }zhi[N];
- void add(int u,int v)
- {
- Next[++cnt]=head[u];
- head[u]=cnt;
- rea[cnt]=v;
- }
- void Tarjan(int u)
- {
- dfn[u]=low[u]=++tim;
- stack[++top]=u,ins[u]=true;
- for (int i=head[u];i!=-;i=Next[i])
- {
- int v=rea[i];
- if (!dfn[v])
- {
- Tarjan(v);
- low[u]=min(low[u],low[v]);
- }
- else if (ins[v]) low[u]=min(low[u],dfn[v]);
- }
- if (low[u]==dfn[u])
- {
- sc++;int x=-;
- while(x!=u)
- {
- x=stack[top--];
- ins[x]=;
- bel[x]=sc;
- }
- }
- }
- void rebuild()
- {
- for (int u=;u<=n;u++)
- {
- for (int i=head[u];i!=-;i=Next[i])
- {
- int v=rea[i];
- if (bel[v]!=bel[u])
- {
- chu[bel[u]]++;
- ru[bel[v]]++;
- }
- }
- }
- for (int i=;i<=sc;i++)
- {
- if (!chu[i]) totalout++;
- if (!ru[i]) totalin++;
- }
- }
- int main()
- {
- int T;scanf("%d",&T);
- while (T--)
- {
- cnt=sc=,top=,totalin=totalout=;
- memset(head,-,sizeof(head));
- memset(dfn,,sizeof(dfn));
- memset(low,,sizeof(low));
- memset(boo,,sizeof(boo));
- memset(chu,,sizeof(chu));
- memset(ru,,sizeof(ru));
- scanf("%d%d",&n,&m);
- for (int i=,x,y;i<=m;i++)
- {
- scanf("%d%d",&x,&y);
- add(x,y);
- }
- for (int i=;i<=n;i++)
- if (!dfn[i]) Tarjan(i);
- rebuild();
- int ans=max(totalout,totalin);
- if (ans==) ans=;
- printf("%d\n",ans);
- }
- }
HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)的更多相关文章
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- HDU 2767:Proving Equivalences(强连通)
题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- HDU 2767 Proving Equivalences (强联通)
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...
- hdu 2767 Proving Equivalences
Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...
- HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2767.Proving Equivalences-强连通图(有向图)+缩点
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- hdu - 2667 Proving Equivalences(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=2767 求至少添加多少条边才能变成强连通分量.统计入度为0的点和出度为0的点,取最大值即可. #include & ...
随机推荐
- MySQL防止重复插入记录SQL
INSERT INTO sysuser(') DUAL:表示虚拟表 sysuser:表名称
- poj1815Friendship(最小割求割边)
链接 题意为去掉多少个顶点使图不连通,求顶点连通度问题.拆点,构造图,对于<u,v>可以变成<u2,v1> <v2,u1>容量为无穷,<u1,u2>容量 ...
- 组件的 render 方法
React.js 中一切皆组件,用 React.js 写的其实就是 React.js 组件.我们在编写 React.js 组件的时候,一般都需要继承 React.js 的 Component(还有别的 ...
- WIN2003 IIS相关错误解决方案
我碰到的主要问题是:“Server Application Unavailable 错误”.“无法显示网页”: 1.如果你的.NET版本是2.0及以上的话,那要注意了:win2003是默认安装1.1的 ...
- NIO客户端主要创建过程
NIO客户端主要创建过程: 步骤一:打开SocketChannel,绑定客户端本地地址(可选,默认系统会随机分配一个可用的本地地址),示例代码如下: SocketChannel client ...
- Java-每日编程练习题③
一.计算圆周率 中国古代数学家研究出了计算圆周率最简单的办法: PI=4/1-4/3+4/5-4/7+4/9-4/11+4/13-4/15+4/17...... 这个算式的结果会无限接近于圆周率的值, ...
- CPLD
复杂可编程逻辑器件(Complex Programmable Logic Device, CPLD),CPLD适合用来实现各种运算和组合逻辑(combinational logic).一颗CPLD内等 ...
- Quartz使用二 通过属性传递数据
上一篇介绍了通过context.getJobDetail().getJobDataMap()方式获取传递的数据,其实可以通过定义属性来传递参数 package org.tonny.quartz; im ...
- CSS 功能简介
CSS的功能主要包括节点管理(Node Management,以下简称NM)和组管理(Group Management,以下简称GM)两部分,都是由守护进程ocssd.bin 来实现的,这是个多线程的 ...
- 【Android】ListView中EditText焦点问题
一.描述: 近期一个项目中需要开发一种类似表格的界面来显示和配置参数,Android并无直接类似表格的控件支持,我采用了ListView中布局EditText和TextView来实现,其中TextVi ...