HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
InputOn the first line one positive number: the number of testcases, at most 100. After that per testcase:
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.OutputPer testcase:
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.Sample Input
2
4 0
3 2
1 2
1 3
Sample Output
4
2 题意:
给定一张有向图,问最少添加几条边使得有向图成为一个强连通图。 题解:
缩完点的图是一个DAG,变成强联通就是,一个点至少一个出度一个入度
所以只需要输出缩完点后的图入度和出度最大值既可。
这个真的很好想,自己瞎比比搞了半天,浪费了许多时间。
真的菜。
想到后怒删代码,修改就过了。
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#define N 20007
#define M 50007
using namespace std; int n,m,tim,sc,totalin,totalout;
int top,dfn[N],low[N],stack[N],ins[N],bel[N],chu[N],ru[N],boo[N];
int cnt,head[N],Next[M],rea[M];
struct Node
{
int ru,chu;
void init()
{
ru=chu=;
}
}zhi[N]; void add(int u,int v)
{
Next[++cnt]=head[u];
head[u]=cnt;
rea[cnt]=v;
}
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;
stack[++top]=u,ins[u]=true;
for (int i=head[u];i!=-;i=Next[i])
{
int v=rea[i];
if (!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (ins[v]) low[u]=min(low[u],dfn[v]);
}
if (low[u]==dfn[u])
{
sc++;int x=-;
while(x!=u)
{
x=stack[top--];
ins[x]=;
bel[x]=sc;
}
}
}
void rebuild()
{
for (int u=;u<=n;u++)
{
for (int i=head[u];i!=-;i=Next[i])
{
int v=rea[i];
if (bel[v]!=bel[u])
{
chu[bel[u]]++;
ru[bel[v]]++;
}
}
}
for (int i=;i<=sc;i++)
{
if (!chu[i]) totalout++;
if (!ru[i]) totalin++;
}
}
int main()
{
int T;scanf("%d",&T);
while (T--)
{
cnt=sc=,top=,totalin=totalout=;
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(boo,,sizeof(boo));
memset(chu,,sizeof(chu));
memset(ru,,sizeof(ru));
scanf("%d%d",&n,&m);
for (int i=,x,y;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
}
for (int i=;i<=n;i++)
if (!dfn[i]) Tarjan(i);
rebuild();
int ans=max(totalout,totalin);
if (ans==) ans=;
printf("%d\n",ans);
}
}
HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)的更多相关文章
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- HDU 2767:Proving Equivalences(强连通)
题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- HDU 2767 Proving Equivalences (强联通)
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...
- hdu 2767 Proving Equivalences
Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...
- HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2767.Proving Equivalences-强连通图(有向图)+缩点
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- hdu - 2667 Proving Equivalences(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=2767 求至少添加多少条边才能变成强连通分量.统计入度为0的点和出度为0的点,取最大值即可. #include & ...
随机推荐
- 在线编译器Coding Ground
http://www.tutorialspoint.com/codingground.htm Free Online IDE and Terminal - Edit, Compile, Execute ...
- dangerouslySetHTML 和 style 属性
这一节我们来补充两个之前没有提到的属性,但是在 React.js 组件开发中也非常常用,但是它们也很简单. dangerouslySetHTML 出于安全考虑的原因(XSS 攻击),在 React.j ...
- idea DeBug调试学习
在Intellij IDEA中使用Debug 目录 一.Debug开篇 二.基本用法&快捷键 三.变量查看 四.计算表达式 五.智能步入 六.断点条件设置 七.多线程调试 八.回退断点 九.中 ...
- Masonry自动布局与UIScrolView适配
Masonry介绍 Masonry是一个轻量级的布局框架 拥有自己的描述语法 采用更优雅的链式语法封装自动布局 简洁明了 并具有高可读性 而且同时支持 iOS 和 Max OS X.可以通过cocoa ...
- hihocoder1779 公路收费
思路: 枚举每个点做根即可. 实现: #include <bits/stdc++.h> using namespace std; typedef long long ll; const l ...
- laravel如何查找门脸及注入类方法
门脸模式 通过 config/app.php 查看别名对应类名 Illuminate\Support\Facades\Log ,查看 LoggerInterface 类文件,得:命名空间+接口名 Ps ...
- android和IOS长连接区别
http://blog.csdn.net/zhangzeyuaaa/article/details/39028369 首先我们必须知道,所有的推送功能必须有一个客户端和服务器的长连接,因为推送是由服务 ...
- SpringBoot集成FastDFS+Nginx整合基于Token的防盗链
为什么要用SpringBoot? SpringBoot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人 ...
- C++中vector用法
在c++中,vector是一个十分有用的容器,下面对这个容器做一下总结. 1 基本操作 (1)头文件#include<vector>. (2)创建vector对象,vector<in ...
- 【整理】 vue-cli 打包后显示favicon.ico小图标
vue-cli 打包后显示favicon.ico小图标 https://www.cnblogs.com/mmzuo-798/p/9285013.html