ioi2018集训队自选题:最短路练习题
题意:链接
定义pos[i]表示i这个值在数组里的下标.
我们先用单调栈找到每个元素左边和右边第一个比它大的元素$l_i$和$r_i$,然后建一棵二叉树,我们就叫做maxtree吧 (upd:mdzz 这就是笛卡尔树)
每个点$i$的父亲是$pos[max(l_i,r_i)]$,如果是$r_i$比较大,那么$i$就是左儿子,$l_i$比较大同理。
当$i$是左儿子时,容易证出$pos[l_i]$在树上的位置就是$i$不停向上走时第一次向左上走遇到的点,反之亦然,设$gfa[x]$表示$x$连向的点中非$fa[x]$的点。
对于每个询问,我们先求出$x,y$的$lca t$,如果$t$不为$x$和$y$,那么最短路上要么经过$t$,要么经过$fa[t]$,这个也很好证(大概就是如果$t$是左儿子,那么$t$的左子树中的点不可能向$fa[t]$上边连边,右边同理)。
定义函数$dis(x,y)$表示$x$到$y$的最短路,其中$y$是$x$的祖先。
当$dep[g[fa[x]]]>=dep[y]$时,显然走$gfa$比较优,然后再在最后一步的时候两种方案取个$min$就行了,问题解决。
#include<bits/stdc++.h>
#define N 100005
using namespace std;
int n,m;
int a[N];
int st[N],ll[N],rr[N],top;
int ch[N][2];
int fa[N][22],fs[N][22],dep[N];
void dfs(int x,int pr,int op)
{
if(ch[x][0])
{
fs[ch[x][0]][0]=x;
dep[ch[x][0]]=dep[x]+1;
if(op==0)
{
fa[ch[x][0]][0]=pr;
dfs(ch[x][0],pr,op);
}
else dfs(ch[x][0],x,op);
}
if(ch[x][1])
{
fs[ch[x][1]][0]=x;
dep[ch[x][1]]=dep[x]+1;
if(op==1)
{
fa[ch[x][1]][0]=pr;
dfs(ch[x][1],pr,op);
}
else dfs(ch[x][1],x,op);
}
return ;
}
void yu()
{
for(int i=1;i<=17;i++)
{
for(int j=1;j<=n;j++)
{
fa[j][i]=fa[fa[j][i-1]][i-1];
fs[j][i]=fs[fs[j][i-1]][i-1];
}
}
}
int lca(int x,int y)
{
if(dep[x]<dep[y])swap(x,y);
for(int i=17;i>=0;i--)if(dep[fs[x][i]]>=dep[y])x=fs[x][i];
if(x==y)return x;
for(int i=17;i>=0;i--)
{
if(fs[x][i]!=fs[y][i])
{
x=fs[x][i];y=fs[y][i];
}
}
return fs[x][0];
}
int dis(int x,int y)
{
int ans=0;
for(int i=17;i>=0;i--)
{
if(dep[fa[x][i]]>=dep[y])
{
ans+=(1<<i);
x=fa[x][i];
}
}
if(!fa[x][0])return ans+dep[x]-dep[y];
return ans+min(dep[x]-dep[y],2);
}
int solve(int x,int y)
{
if(dep[x]<dep[y])swap(x,y);
int t=lca(x,y);
if(t==y)return dis(x,y);
int tmp=dis(x,t)+dis(y,t);
if(t!=1)tmp=min(tmp,dis(x,fs[t][0])+dis(y,fs[t][0]));
return tmp;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)
{
while(top&&a[st[top]]<a[i])top--;
if(top)ll[i]=st[top];
st[++top]=i;
}
top=0;
for(int i=n;i>=1;i--)
{
while(top&&a[st[top]]<a[i])top--;
if(top)rr[i]=st[top];
st[++top]=i;
}
ch[1][1]=n;
for(int i=2;i<=n-1;i++)
{
if(a[ll[i]]<a[rr[i]])ch[ll[i]][1]=i;
else ch[rr[i]][0]=i;
}
dep[1]=1;dfs(1,0,0);dfs(1,0,1);
yu();
int t1,t2;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&t1,&t2);
printf("%d\n",solve(t1,t2));
}
return 0;
}
ioi2018集训队自选题:最短路练习题的更多相关文章
- 简单数据结构题(from 钟子谦——IOI2018集训队自选题)
简单数据结构题(from 钟子谦--IOI2018集训队自选题) 试题描述 给一棵 \(n\) 个点的树,点权开始为 \(0\) ,有 \(q\) 次操作,每次操作是选择一个点,把周围一圈点点权 \( ...
- 【BZOJ2622】[2012国家集训队测试]深入虎穴 次短路
[BZOJ2622][2012国家集训队测试]深入虎穴 Description 虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物,例如“ ...
- 【UOJ347】【WC2018】通道 边分治 虚树 DP
题目大意 给你三棵树,点数都是\(n\).求 \[ \max_{i,j}d_1(i,j)+d_2(i,j)+d_3(i,j) \] 其中\(d_k(i,j)\)是在第\(k\)棵数中\(i,j\)两点 ...
- 8月清北学堂培训 Day5
今天是杨思祺老师的讲授~ 最短路练习题: POJ 1125 Stockbroker Grapevine 有 N 个股票经济人可以互相传递消息,他们之间存在一些单向的通信路径.现在有一个消息要由某个人开 ...
- 【6.24校内test】T3 棠梨煎雪
[题目背景] 岁岁花藻檐下共将棠梨煎雪. 自总角至你我某日辗转天边. 天淡天青,宿雨沾襟. 一年一会信笺却只见寥寥数言. ——银临<棠梨煎雪> [问题描述] 扶苏正在听<棠梨煎雪&g ...
- 【LGR-065】洛谷11月月赛 III Div.2
临近$CSP$...... 下午打了一发月赛,感觉很爽. 非常菜的我只做了前两题......然而听说前两题人均过...... 写法不优秀被卡到$#1067$...... T1:基础字符串练习题: 前缀 ...
- BZOJ_2622_[2012国家集训队测试]深入虎穴_最短路
BZOJ_2622_[2012国家集训队测试]深入虎穴_最短路 Description 虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物 ...
- [转] ACM中国国家集训队论文集目录(1999-2009)
国家集训队1999论文集 陈宏:<数据结构的选择与算法效率——从IOI98试题PICTURE谈起>来煜坤:<把握本质,灵活运用——动态规划的深入探讨>齐鑫:<搜索方法中的 ...
- ACM/ICPC 之 两道dijkstra练习题(ZOJ1053(POJ1122)-ZOJ1053)
两道较为典型的单源最短路径问题,采用dijkstra解法 本来是四道练习题,后来发现后面两道用dijkstra来解的话总觉得有点冗余了,因此暂且分成三篇博客(本篇以及后两篇). ZOJ1053(POJ ...
随机推荐
- windows下pwd、ls、tail-f命令使用
一.问题 习惯了linux命令,在windows上使用cmd没有这些命令时很不习惯. 二.解决办法 2.1 找到这些命令对应的windows命令 ls,对应于windows的dir pwd,对应于wi ...
- GitFlow原理浅析
一.Git优点 分布式存储 , 本地仓库包含了远程仓库的所有内容 . 安全性高 , 远程仓库文件丢失了也不怕 优秀的分支模型 , 创建/合并分支非常的方便 方便快速 , 由于代码本地都有存储 , 所以 ...
- Roslyn入门(一)-C#语法分析
演示环境 Visual Studio 2017 .NET Compiler Platform SDK 简介 今天,Visual Basic和C#编译器是黑盒子:输入文本然后输出字节,编译管道的中间阶段 ...
- Android环境准备
Android环境准备: 1.安装Java环境(自行安装) 2.下载Android SDK包 3.配置系统环境变量 新建ANDROID_HOME 变量值:SDK安装路径(如:D:\android-sd ...
- Ceph分布式存储集群-硬件选择
在规划Ceph分布式存储集群环境的时候,对硬件的选择很重要,这关乎整个Ceph集群的性能,下面梳理到一些硬件的选择标准,可供参考: 1)CPU选择Ceph metadata server会动态的重新分 ...
- 网页录像录音功能的实现之MediaRecorder的使用
前面介绍了通过H5实现在网页内打开摄像头和麦克风,实现截图和图像预览的相关知识. getUserMedia API及HTML5 调用摄像头和麦克风 一个简单的demo 实现摄像头的调用及视频录制,截 ...
- 浏览器跨域请求之credentials
-时间起源- 前段时间,需要弄个简单的网站出来,访问远程的api服务. 我是这么做的.首先是在搭建一个nodejs服务来运行前端页面.在我请求登录的时候,能成功返回相应的成功信息.然后,当我再次请求读 ...
- TestSushu1
https://github.com/jzjaerui/Individual-Project/blob/master/TestSushu1 <程序设计实践I> 题目: ...
- 用户模拟+spec
用户模拟:用户模拟的对象分别为小学二年级学生,学生父亲以及小学教师. 名字 孔小颖 性别 男 职业 小学生 收入 来自父母给予 知识层次和能力 小学二年级 生活/工作情况 在学校上课,数学成绩较差,放 ...
- Spring Cloud Zipkin
Zipkin the idea is from the googlge paper:Dapper https://yq.aliyun.com/articles/60165 https://www.e4 ...