dijkstra 的优先队列优化
既然要学习算法,就要学习到它的精髓,才能够使用起来得心应手。
我还是远远不够啊。
早就知道,dijkstra 算法可以用优先队列优化,我却一直不知道该怎样优化。当时,我的思路是这样的:假设有n个顶点,将这n个顶点的id和距原点的距离放在结构体内,再将这n个结构体放入优先队列中,堆顶是距源点距离最小的点。每次要更新距离时,仅仅只需要取堆顶的数就可以了。然而,具体要怎样更新堆内各点的距离呢?将堆顶取出,更新后再放回去?这样的话堆顶永远都会是同一个元素了,因为堆顶元素在更新后,还是距离最小的。那么我们可以依次取出堆顶元素,放在结构体数组之内,等待更新完毕后再放回去,那么这样的时间复杂度是2*n,而原先的时间复杂度,也是2*n,这样的优化没有意义,反而还多了一个结构体数组浪费空间。
如果你也和我的想法一样,那我们真是太有缘分了,看来大家都是蠢的七窍流血的一类人啊,你是不是也和我一样,正在反思自己是不是应该放弃学习算法啊?实际上,在dijkstra里面,有一个十分重要的标记数组,这个标记数组决定了,已经确定了最短距离的点,就不要再次优化了!你明白了吧,想想自己真是蠢呐,竟然忘记如此重要的数组!
让我们再次思考,是否要将所有没有确定的点全部放入数组呢?
当然不要,我们只要将刚刚更新过的放进去就行,因为那些没有更新的,肯定不会是路径最短的。那么我们每次都放,就会导致某个节点被放进去很多次了,但是没关系,他们的被放进去的时候,距离是不同的,所以距离大的会沉到底下去,最短路径一定不是他们(对同一节点来说),他们要出推时,我们只处理第一个,以后的一律不处理。这个我们还用一个标记数组来解决。
代码自己去找吧,https://blog.csdn.net/jobsandczj/article/details/49962557,这个人写得不错,除了码风很丑,加上竟然使用邻接矩阵。。。然后还有book数组定义了没有使用以外,其他的都还行。
如果你连这些问题都不想面对,或者根本就不想看代码的话,你还是转行吧。
在此还是贴上自己的模板吧
这个模板跑起来反而比我原先的代码更慢,我觉得这是邻接表的问题,因为在一开始我用的是啊哈算法的邻接表,而现在用的是vector,再加上可能我在做的那个题太水了,数据量太小,导致优先队列的优势没有发挥出来。
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
struct node
{
int x;
int s; bool operator<(const node p)const
{
return p.s<s;
}
};
bool book[100];
int dis[100];
const int inf = 2100000000;
int main()
{
vector<int>u[100];
vector<int>w[100];
int n,m;
cin>>n>>m;
int x,y,z;
for(int i=0;i<m;i++){
cin>>x>>y>>z;
u[x].push_back(y);
w[x].push_back(z);
}
fill(dis,dis+n+1,inf);
dis[1]=0;
priority_queue<node>q;
node exa;
exa.x=1;
exa.s=0;
q.push(exa);
while(!q.empty()){
exa=q.top();q.pop();
if(book[exa.x]){continue;}
book[exa.x]=true;
int t=exa.x;
for(int i=0;i<u[t].size();i++){
if(dis[u[t][i]]>dis[t]+w[t][i]){
dis[u[t][i]]=dis[t]+w[t][i];
exa.s=dis[u[t][i]];
exa.x=u[t][i];
q.push(exa);
}
}
}
for(int i=1;i<=n;i++){
cout<<dis[i]<<" ";
}
cout<<endl;
}
下面的代码包括了对路径的输出,只是我没有找到这样的题,所以不敢保证算法的正确性:
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
struct node
{
int x;
int s; bool operator<(const node p)const
{
return p.s<s;
}
};
bool book[100];
int dis[100];
int f[1000];
const int inf = 2100000000;
int main()
{
vector<int>u[100];
vector<int>w[100];
int n,m;
cin>>n>>m;
int x,y,z;
for(int i=0;i<m;i++){
cin>>x>>y>>z;
u[x].push_back(y);
w[x].push_back(z);
}
fill(dis,dis+n+1,inf);
fill(f,f+n+1,-1);
dis[1]=0;
priority_queue<node>q;
node exa;
exa.x=1;
exa.s=0;
q.push(exa);
while(!q.empty()){
exa=q.top();q.pop();
if(book[exa.x]){continue;}
book[exa.x]=true;
int t=exa.x;
for(int i=0;i<u[t].size();i++){
if(dis[u[t][i]]>dis[t]+w[t][i]){
dis[u[t][i]]=dis[t]+w[t][i];
exa.s=dis[u[t][i]];
f[u[t][i]]=t;
exa.x=u[t][i];
q.push(exa);
}
}
}
stack<int>h;
for(int i=1;i<=n;i++){
cout<<dis[i]<<": ";
int ah=f[i]; while(ah!=-1){
h.push(ah);
ah=f[ah];
}
while(!h.empty()){
cout<<h.top()<<" ";
h.pop();
}cout<<i<<" ";
cout<<endl;
}
cout<<endl;
}
每个人都是被动出生,只有选择死亡才是真正的自由!
dijkstra 的优先队列优化的更多相关文章
- 地铁 Dijkstra(优先队列优化) 湖南省第12届省赛
传送门:地铁 思路:拆点,最短路:拆点比较复杂,所以对边进行最短路,spfa会tle,所以改用Dijkstra(优先队列优化) 模板 /******************************** ...
- poj 1511 优先队列优化dijkstra *
题意:两遍最短路 链接:点我 注意结果用long long #include<cstdio> #include<iostream> #include<algorithm& ...
- 【bzo1579】拆点+dijkstra优先队列优化+其他优化
题意: n个点,m条边,问从1走到n的最短路,其中有K次机会可以让一条路的权值变成0.1≤N≤10000;1≤M≤500000;1≤K≤20 题解: 拆点,一个点拆成K个,分别表示到了这个点时还有多少 ...
- POJ 1511 Invitation Cards(单源最短路,优先队列优化的Dijkstra)
Invitation Cards Time Limit: 8000MS Memory Limit: 262144K Total Submissions: 16178 Accepted: 526 ...
- Dijkstra算法(朴素实现、优先队列优化)
Dijkstra算法只能求取边的权重为非负的图的最短路径,而Bellman-Ford算法可以求取边的权重为负的图的最短路径(但Bellman-Ford算法在图中存在负环的情况下,最短路径是不存在的(负 ...
- dijkstra算法之优先队列优化
github地址:https://github.com/muzhailong/dijkstra-PriorityQueue 1.题目 分析与解题思路 dijkstra算法是典型的用来解决单源最短路径的 ...
- 晴天小猪历险记之Hill(Dijkstra优先队列优化)
描述 这一天,他来到了一座深山的山脚下,因为只有这座深山中的一位隐者才知道这种药草的所在.但是上山的路错综复杂,由于小小猪的病情,晴天小猪想找一条需时最少的路到达山顶,但现在它一头雾水,所以向你求助. ...
- 最短路--dijkstra+优先队列优化模板
不写普通模板了,还是需要优先队列优化的昂 #include<stdio.h> //基本需要的头文件 #include<string.h> #include<queue&g ...
- 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)
关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...
随机推荐
- jackson出现错误 Unrecognized field,几种处理方法
1.请求的JSON里面字段多余映射的实体类,可以通过在类的顶部添加@JsonIgnoreProperties,2.0版本引入 import org.codehaus.jackson.annotate. ...
- Java多线程的使用以及原理
Java有两种方式实现多线程. 第一种——继承Thread类,并重写run方法 步骤: 定义类继承Thread类: 重写子类的run方法,将线程需要执行的代码写在run方法中: 创建子类的对象,则创建 ...
- 最新一课 老师指点用Listview适配器
上课前 <?xml version="1.0" encoding="utf-8"?> <ScrollView xmlns:android ...
- [福大软工] Z班 评测作业对应表
学号 测试组号 011500908 8 031501102 3 031501118 8 031502106 6 031502109 9 031502113 3 031502142 2 03150220 ...
- python 中的集合set
python中,集合(set)是一个无序排列,可哈希, 支持集合关系测试,不支持索引和切片操作,没有特定语法格式, 只能通过工厂函数创建.集合里不会出现两个相同的元素, 所以集合常用来对字符串或元组或 ...
- 福州大学软件工程1816 | W班 作业成绩排名汇总
评分链接 第一次作业--准备篇 第二次作业--个人项目实战 第三次作业--原型设计(结对第一次) 第四次作业--团队展示(团队) 第五次作业--项目选题报告(团队) 第六次作业--结对第2次作业--W ...
- [工作相关] 一个虚拟机上面的SAP4HANA的简单使用维护
1.公司组织竞品分析, 选择了SAP的 SAP4HANA作为竞品 这边协助同事搭建了SAP4HANA的测试环境: 备注 这个环境 应该是同事通过一些渠道获取到的. 里面是基于这个虚拟机进行的说明:: ...
- 配合es5.8的使用,升级sb版本到2.X,遇到一个问题
问题:Failed to bind properties under 'spring.redis.jedis.pool.max-wait' to java.time.Duration: Propert ...
- Lodop如何设置预览后导出带背景的图,打印不带背景图
Lodop中的ADD_PRINT_SETUP_BKIMG,可以加载上背景图,该背景图在预览的时候可以显示也可以不显示,打印可以打印出来也可以不打印出来.一般套打,都是不打印背景图的,比如一些快递的快递 ...
- JavaScript——闭包机制
闭包机制是JavaScript的重点和难点,本文希望能帮助大家轻松的学习闭包 一.什么是闭包? 闭包就是可以访问另一个函数作用域中变量的函数.下面列举出常见的闭包实现方式,以例子讲解闭包概念 func ...